Обычный трансформатор преобразовывает первичное напряжение U1 во вторичное U2. Нередко одного выходного напряжения для питания электроприемников бывает недостаточно. Задача создания третьего среднего напряжения СН (U3), наряду с высоким напряжением ВН (U1) и трансформируемым низким (U2), решается установкой трехобмоточного трансформатора с дополнительной третьей обмоткой на магнитопроводе. Этот электрический аппарат заменяет собой два двухобмоточных трансформатора.
Общее описание и назначение
Если взять двухобмоточный трансформатор и на стержень намотать проводом витки дополнительной катушки индуктивности, наводимое в ней напряжение будет пропорционально числу витков. В зависимости от исполнения вторичные катушки могут быть одинаковой или разной мощности.
Cхема 3-х обмоточного трансформатора
Существуют 2 вида трансформаторов подобного типа:
- с 1-й первичной и 2-мя вторичными обмотками – самый распространенный вид;
- с 2-мя первичными и 1-ой вторичной обмоткой – этот вид задействован в трансформаторных группах электростанций.
Условное обозначение 3-х обмоточного трансформатора
Номинальной мощностью 3-х обмоточного аппарата считается параметр самой мощной его катушки, которой в данном типе электрических устройств является обмотка ВН. Размещение силового 3-х обмоточного устройства с невысокой мощностью любой из обмоток в электрических цепях экономически не оправдано. Поэтому мощности вторичных катушек ВН, СН и НН аппарата в процентах от Pном обычно составляют:
- 100;100;100%;
- 100;100;66,7%;
- 100;66,7;100%;
- 100;66,7;66,7%.
Конструкция и принцип действия
Конструктивно первичную катушку 3-х обмоточного силового трансформатора обычно располагают в середине между двумя вторичными, чтобы ослабить влияние обмоток между собой. Если нулевой вывод заземляется, то она называется «глухозаземленной», в ином случае именуют «обмоткой с изолированной нейтралью».
Вторичную катушку с более низким напряжением (НН) размещают ближе к стержню устройства.
При подобном расположении напряжение КЗ между обмотками ВН и СН минимально. Это позволяет снизить потери мощности при передаче в сеть СН. Одновременно значение напряжения КЗ между ВН и НН относительно большое, что ограничивает силу тока короткого замыкания в сети НН низшего напряжения.
3-х обмоточные преобразователи переменного напряжения нашли широкое применение в силовой энергетике. В маркировке изделий они обозначаются третьей буквой «Т» в буквенно-цифровом коде. Очень часто требуется иметь третье более низкое, чем U2 значение для подачи менее мощным электроприемникам или, расположенным вблизи подстанций, потребителям электроэнергии.
Стандартными условиями эксплуатации изделий считается температура не выше 35ºС и влажность воздуха ≤65%, обеспечиваемые в отапливаемом помещении. Товарные позиции этого типа изготовляются как для нужд народного хозяйства, так и экспортируются в страны с умеренным/ тропическим климатом.
На понижающих подстанциях для раздельного питания электрических сетей в радиусе 10–15 км задействуют электротехнические изделия с выходными параметрами 6–10 кВ, а в радиусе до 50-60 км применяют 35 кВ трансформаторы. 3-х обмоточные преобразователи только с более низким значением параметров используется в измерительной технике и радиотехнике, автоматике и средствах релейной защиты.
Разновидности
Однофазный
Однофазные трехобмоточные трансформаторы для силовых линий обычно изготавливают мощностью 5000–40000 кВт с напряжением обмоток:
- ВН – с значениями 110–121 кВ;
- CН – от 34,5 до 38,5 кВ;
- НН – в диапазоне 3,15–15,7 кВ.
Типовой однофазный 3-х обмоточный преобразователь, например, классов напряжения 15, 20, 24 и 35 кВ предназначен для встраивания в пофазно-экранированные токопроводы сетей 50/60Гц. Конструкция изделия включает следующие составные части и комплектующие:
- бак с крышкой из немагнитной стали, задвижкой и пробкой, заполненный трансформаторным маслом;
- магнитопровод из электротехнической стали;
- активную часть, состоящую из обмоток, изоляции и крепежных элементов;
- плоского контакта на крышке бака первичного вводного напряжения;
- заземляющего ввода первичной обмотки и вводов вторичной обмотки на боковой стенке бака.
Электрические аппараты большой мощности (≤40000 кВа), рассчитанные на работу в интервале 110–121 кВ дополнительно могут оснащаться:
- выхлопной трубой для защиты бака от разрыва парами масла и газовым реле, отключающим подачу электропитания при внутривитковом замыкании в трансформаторе;
- расширителя с воздухоосушителем и термосифонным фильтром для поддержания требуемого уровня масла и предотвращения попадания влаги из атмосферы;
- системами естественной/принудительной циркуляции воздуха или масла.
Экономическая эффективность применения изделия состоит в том, что при 3-х обмоточном исполнении первичный ток равен не арифметической, а геометрической сумме приведенных вторичных токов. Трехобмоточные (многообмоточные) аппараты целесообразно применять вместо двухобмоточных в том случае, если нагрузки ЛЭП/обслуживаемых электрических сетей соизмеримы, то есть отличаются друг от друга не более чем в 5 раз.
Трехфазный
В трехфазных преобразователях переменного напряжения на каждую трансформируемую фазу приходится 3 обмотки. В таком трансформаторе с общим магнитопроводом обмоток рабочие процессы протекают для каждой фазы аналогично, только со сдвигом во времени. На первичные обмотки поступает переменное фазное напряжение, вторичные обмотки соединены с нагрузкой. Поэтому для описания работы электрического аппарата исследуется только одна рабочая фаза.
Трехфазные 3-х обмоточные преобразователи для силовых линий обычно изготавливают мощностью 5600–31500 кВт и напряжениями катушек аналогичным тем, которые используются в однофазных аппаратах. Трансформаторы получили наибольшее распространение на электрических подстанциях. По сравнению с группой однофазных трансформаторов при той же мощности они позволяют экономить 12–15% электроэнергии и 20–25% активных материалов в стоимостном выражении. Это конкурентное преимущество изделий подобного типа учитывается при изготовлении аппаратов массовых серий.
Схемы замещения
Схема замещения 3-х обмоточного трансформатора представлена ввиде трехлучевой звезды, состоящей из активных R и реактивных X сопротивлений обмоток. Все сопротивления в схеме приведены к напряжению высшей обмотки. На первичные зажимы подключена ветвь намагничивания (на схеме она соединена с корпусом), состоящая из B – активной и G – реактивной проводимости.
Проводимость В возникает ввиду потерь в стали части мощности на перемагничивание и вихревые токи, G отражает мощность намагничивания. За номинальную Pном катушек трансформатора принимается мощность его первичной обмотки. Мощность обмоток трансформатора СН и НН и коэффициент трансформации выбирается под потребности конкретного объекта энергопотребления. Электрический аппарат рассчитывается на соответствующую мощность (диаметр и количество витков, электрическую прочность изоляции, размер и материал магнитопровода). С учетом нагрева при работе выбирается соответствующая модель.
Проведение опытов короткого замыкания
Чтобы определить значения параметров этой схемы, необходимо провести 1 опыт холостого хода и 3 опыта с коротким замыканием. Если первый опыт необходим для определения B и G и не отличается от опыта двухобмоточного аналога, то опыты короткого замыкания проводятся с целью определения паспортных данных напряжения короткого замыкания U к и потерь активной мощности ∆Р к на соответствующих катушках трансформатора в режиме короткого замыкания:
- U к вн, ∆Р к вн – закорочивается обмотка НН и подается питание на обмотку ВН;
- U к сн, ∆Р к сн – коротится обмотка НН и питание подается со стороны обмотки СН;
- U к вс, ∆Р к вс – накоротко замыкаются клеммы катушки СН и запитывается обмотка ВН.
В результате решения системы уравнений выводится значение U к каждой из обмоток:
При определении ∆Р к следует учитывать значение активной мощности, содержащееся в справочнике для конкретной модели трансформатора. Обычно приводится параметр для самой мощной обмотки. Очень часто в источниках дается одно значение ∆Рк, определенное из опыта КЗ, выполненного для наиболее мощных обмоток, обычно ∆Рк вс. Потери мощности в каждой катушке определяются с учетом соотношения номинальных мощностей обмоток S ном %, выраженных в процентах. Потери активной мощности ∆Рк в обмотках СН и НН рассчитываются из пропорций:
При соотношениях всех мощностей обмоток 100 %:
∆Рк в = ∆Рк с = ∆Рк н = 0,5 ∆Рк вс,
Если соотношение 100 %, 100 %, 66,7 %, то:
- ∆Рк в = ∆Рк с = 0,5 ∆Рк вс;
- ∆Рк н = 1,5 ∆Рк в.
Применять вычисления придется только для электрических аппаратов, производимых ранее. Они могли иметь мощность обмоток НН и СН в полтора раза меньше, чем мощность катушки ВН.
В последние годы отечественные производители выпускают трехобмоточные трансформаторы с одинаковой мощностью обмоток 100%.
Прекрасная статья. Пошагово и логически расписаны все этапы замещения трехобмоточных трансформаторов. Счастье, что наткнулся на эту статью.
схема подключения обмоток трансформаторов позволяет регулировать напряжение на выходе.
Статья очень помогла разобраться в вопросе определения величины потерь активной мощности. Спасибо большое автору!
Нужен каковы достоинства трехобмоточных трансформаторов
Нужен каковы достоинства трехобмоточных трансформаторов