Защита трансформаторов тока от перенапряжений

Содержание
  1. Основные защиты силового трансформатора
  2. Защита по максимальному току (МТЗ)
  3. Основные защиты трансформатора
  4. Защита трансформатора дифференциальная
  5. Принцип действия газовой защиты трансформаторов
  6. Максимальная токовая защита трансформатора
  7. Виды повреждений
  8. Принцип работы ограничителя перенапряжений
  9. Деление защит трансформаторов на основные и резервные
  10. Разновидности защит и их суть
  11. Продольная дифференциальная защита
  12. Релейная
  13. Тепловая
  14. Токовая отсечка
  15. Газовая защита
  16. Струйная защита
  17. Максимальная токовая защита
  18. Токовая защита нулевой последовательности
  19. Специальная резервная защита
  20. Токовая ступенчатая защита
  21. Защита от минимального напряжения
  22. Защита печных трансформаторов
  23. Защита трансформатора дифференциальная
  24. Принцип действия газовой защиты трансформаторов
  25. Максимальная токовая защита трансформатора
  26. Индивидуальная защита от непереключения фаз выключате­лей стороны среднего и высшего напряжения АТ
  27. Мероприятия для защиты обмоток от перенапряжений
  28. Защита от неполнофазного режима на стороне 330 кВ (750) АТ (ЗНР-330)
  29. Защита от перегрузки
  30. Видео: Релейная защита. Вводная лекция
  31. Оценка необходимости установки ОПН

Основные защиты силового трансформатора


Трансформаторы и автотрансформаторы конструктивно весьма надежны благодаря отсутствию у них движущихся или вращающихся частей. Несмотря на это, в процессе эксплуатации возможны и практически имеют место их повреждения и нарушения нормальных режимов работы. Поэтому трансформаторы и автотрансформаторы должны оснащаться соответствующей релейной защитой.

Все основные виды защиты трансформатора можно разделить на две группы:

  • основные
  • резервные.

В соответствии с назначением для защиты трансформаторов (автотрансформаторов) при их повреждениях и сигнализации о нарушении нормальных режимов работы применяются следующие типы защит:

  • Дифференциальная защита для защиты при повреждениях обмоток, вводов и ошиновки трансформаторов (автотрансформаторов)
  • Токовая отсечка мгновенного действия для защиты трансфер мотора (автотрансформатора) при повреждениях его ошиновки, вводов и части обмотки со стороны источника питания
  • Газовая защита для защиты при повреждениях внутри бака трансформатора (автотрансформатора), сопровождающихся выделением газа, а также при понижениях уровня масла.
  • Максимальная токовая или максимальная направленная защита или эти же защиты с пуском минимального напряжения для защиты от сверх токов, проходящих через трансформатор (автотрансформатор), при повреждении как самого трансформатора (автотрансформатора), так и других элементов, связанных с ним. Защиты от сверх токов действуют, как правило, с выдержкой времени.
  • Защита от замыканий на корпус
  • Защита от перегрузки, действующая на сигнал, для оповещения дежурного персонала или с действием на отключение на подстанциях без постоянного дежурного персонала.
    Кроме того, в отдельных случаях на трансформаторах (автотрансформаторах) могут устанавливаться и другие виды защиты.

Релейная защита трансформатора – это система, состоящая из измерительных и коммутационных устройств, отключающая трансформатор при ненормальных режимах работы и в случае ситуаций приводящих к повреждению.

К ненормальным и опасным режимам работы силового трансформатора относятся:

  • перегрузка по одной или трем фазам, приводящим к повышению тока, проходящего через обмотки,
  • замыкание на землю или на нейтраль одного или всех выводов трансформатора с высокой или низкой стороны,
  • межфазные замыкания внутри обмоток и со стороны выводящих шин,
  • замыкания внутри обмоток трансформатора.

Во всех этих случаях сигналом возникновения опасной ситуации служат повышение проходящего через короткозамкнутый участок тока и понижение напряжения.

Релейная защита должна надежно зафиксировать отклонение тока или напряжения и отключить трансформатор или поврежденный участок.

Из изложенного следует, что защита трансформаторов и автотрансформаторов должна выполнять следующие функции:

  • отключать трансформатор (автотрансформатор) от всех источников питания при его повреждении;
  • отключать трансформатор (автотрансформатор) от поврежденной части установки при прохождении через него сверх тока в случаях повреждения шин или другого оборудования, связанного с трансформатором (автотрансформатором), а также при повреждениях смежного оборудования и отказах его защиты или выключателей;
  • подавать предупредительный сигнал дежурному персоналу подстанции (или электростанции) при перегрузке трансформатора (автотрансформатора), выделении газа из масла, понижении уровня масла, повышении его температуры.

Защита по максимальному току (МТЗ)


Рис.1 схема релейной защиты трансформатора по максимальному току

Защита по максимальному току трансформатора  срабатывает при превышении тока, проходящего через трансформатор (Рис. 1). Реле автоматики А0 и А1 срабатывают при токе, превышающем ток короткого замыкания для данной обмотки. Измерение тока осуществляется через трансформатор тока, включенного на две шины А и С.

При наличии межфазного замыкания на шине В через другие шины все равно протекает большой ток. Одно или два реле автоматики запускают цепь запуска реле времени Т.

Задержка реле времени требуется для лучшей селективности защиты – чем ближе трансформатор по линии к источнику энергии, тем меньшее должно быть время срабатывания. Реле времени через определенный промежуток времени запускает промежуточное реле.

L, управляющей цепью реле отключения YAT. Реле отключения после срабатывания отключает входы и выходы трансформатора от источника и потребителя энергии и блокируется по цепям либо реле времени, либо промежуточного реле.

Силовые трансформаторы относительно малой мощности обычно защищают предохранителями со стороны высшего напряжения и предохранителями или автоматами со стороны отходящих линий низшего напряжения. Ток плавкой вставки высоковольтного предохранителя выбирается с учетом отстройки от бросков тока намагничивания при включении силового трансформатора под рабочее напряжение. С учетом этого номинальный ток предохранителя.

Основные защиты трансформатора

Блинкер
Любая релейная защита трансформатора направлена на срабатывание при повреждении или же ненормальном режиме работы этого устройства. Нужно отметить, что некоторые из них направлены на мгновенное отключение в случае аварии, а другие только подают предупреждающий сигнал персоналу. В свою очередь, персонал уже действует по инструкциям, которые разработаны непосредственно и индивидуально для каждой схемы снабжения и распределительной подстанции. Для того чтобы было видно какой тип аварии произошёл применяются параллельно и сигнальные реле (блинкер), которые должны быть подписаны в соответствии с правилами.

Для защиты трансформатора применяется целый комплекс мероприятий и электромеханических схем, вот основные из них:

  1. Дифференциальная защита. Она предохраняет от повреждений и коротких замыканий как в обмотках, так и на наружных выводах. Действует только на отключение;
  2. Газовая защита. Защищает от превышения давления внутри расширительного бачка вследствие выделения газов или же выброса масла, а также от снижения его уровня ниже определённого критического показания;
  3. Тепловая защита. Она организована в основном на термосигнализаторах (ТС), которые подают сигнал на пульт персонала или же на включения вентиляторов охлаждения. Такой вид дополнительной защиты служит как предупреждающий при начальных стадиях аварийных ситуаций. При этом выбор самого ТС не важен, главное, выставить правильно диапазон, при котором должен подаваться сигнал. Максимально допустимый нагрев масла составляет 95 градусов;
  4. Защита минимального напряжения. Предусматривает отключение при снижении входного уровня напряжения ниже допустимого. Зачастую имеет выдержку времени, которая даст возможность не реагировать на небольшие просадки;
  5. От замыкания на землю. Выполняется путём установки трансформаторов тока в соединение корпуса и заземляющего контура;
  6. Максимальная токовая (МТЗ) выполняет роль защитного механизма как при коротких замыканиях в цепи вторичного тока, так и при больших перегрузках.

Защита трансформатора дифференциальная

Это одна из самых быстродействующих и важных защит, которая необходима для надёжной эксплуатации следующих трансформаторов:

  1. На понижающих одиночно работающих трансформаторах мощность которых выше чем 6300 кВА;
  2. При параллельной работе данных устройств с мощностью 4000 кВА и выше. При этом таком подключении данная защита является гарантией не только быстродействия, но и селективного отключения только того устройства, которое повреждено, а не полного обесточивания питаемого электрооборудования повлекшее за собой потери в производстве продукции или в появлении бракованных изделий;
  3. Если МТЗ трансформатора не даёт необходимой чувствительности и скорости отключения, и может срабатывать с выдержкой времени более одной секунды;
  4. Если трансформаторы меньшей мощности, то применяется обычная токовая отсечка, подключенная к реле тока.

Дифф защита

Принцип действия дифференциальной защиты основан на сравнении тока, а точнее, его величины. Сравнивание происходит в конце и в начале защищаемого участка. Участком в данном случае служит одна из понижающих обмоток. То есть один трансформатор тока устанавливается с высокой, а другой с низкой стороны.

На схеме видно подключение трансформаторов ТТ1 и ТТ2 соединенных последовательно. Т — это реле тока, которое остаётся в бездействии при нормальной работе, когда токи одинаковы, то есть их разность будет равна нулевому значению. Во время возникновения короткого замыкания в защищаемом участке цепи появится разность токов и реле втянется, тем самым отключив трансформатор от сети. Такой вид защиты будет срабатывать как при межвитковых, так и при межфазных замыканиях. Мгновенная работа такого защитного оборудования не требует выдержки времени, так как её быстрое срабатывание является её основным положительным фактором. Выбор вставки срабатывания реле Т должен выполнятся электротехническими лабораториями или же проектировщиками данного оборудования. Для каждого конкретного случая уровень тока втягивания реле можно изменять, чтобы не было ложных срабатываний.

Принцип действия газовой защиты трансформаторов

Газовая защита силовых трансформаторов основана на работе газового реле, которое и изображено на рисунке.

В специальном окошке при выделении газов можно увидеть пузырьки.

Окошко трансформатора
Реле представляет собой металлический сосуд, в котором расположены два специальных поплавка. Они врезаны в наклонный трубопровод. В свою очередь, данный трубопровод является связывающим звеном между охлаждающий корпусом имеющим радиатор и расширительным баком.

Если трансформатор находится в рабочем исправном состоянии газовое реле его наполнено трансформаторным маслом, а поплавки реле находятся в определённом нерабочем состоянии, так как внутри их масло. Поплавки непосредственно соединены с контактной группой, которая имеет аварийный и предупредительный сигнал. В нормальном состоянии контакты находятся в разомкнутом положении. При нагреве масла в случае ненормального процесса в работе из него выделяется газ, который по закону физики легче, естественно, подымается вверх. На пути газов находится газовое реле и его поплавки, которое при накоплении определённого количества поднимающего его газа начинает движение, чем и размыкает первую ступеньку. При более бурном развитии событий и второй поплавок приводится в движение и замыкает уже вторую ступень которая приводит к отключению. Взятие пробы масла и его проверка, а также химический анализ позволяет определить суть повреждения.

Транфсорматор

Из практики же не каждое срабатывание газового реле приводит к взятию проб и анализу масла, иногда при заливке может попасть в систему воздух которой во время эксплуатации будет подниматься и сможет стать причиной срабатывания данной защиты. Для этого нужно всего лишь открыть специальный краник (вентиль), находящийся на корпусе реле и выпустить воздух. Эта процедура выполняется при первом срабатывании предупредительного поплавка.

Выбор самого реле основывается на конструкции трансформатора и его габаритах. Очень часто применяются несколько типов данного устройства РГЧЗ-66, ПГ-22, BF-50, BF-80, РЗТ-50, РЗТ-80. Все они имеют смотровое окошко и герметичный корпус.

Газовая защита трансформатора и принцип действия, работы в принципе несложны стоит только один раз разобраться в них.

Максимальная токовая защита трансформатора

Основную роль отключающего устройства при повышении критического уровня тока, для трансформаторов не масляных и обладающих малой мощностью, служит предохранитель. Такой элемент защиты даёт возможность персоналу, не понимающему причины отключения, повторно произвести включение, которое может принести вред оборудованию или пожар. Предохранителями оборудованы также измерительные трансформаторы напряжения, которые расположены на подстанциях в ячейках КРУ, в таких же, как и масляные выключатели. Они предназначены для измерения напряжения в сети 6000 кВ и выше, а также для цепей защиты от повышенного или пониженного напряжения.

Для трансформаторов выбор предохранителей осуществляется из такого соотношения

формула

Iвс — ток плавкой вставки предохранителя;

Iн. тр. — номинальный ток первичной обмотки трансформатора, в цепь которого он и устанавливается.

Предохранитель — самый простой способ защитить трансформатор от превышения тока.

МТЗ защита

Ток срабатывания максимальной защиты при установке её с низшей стороны, выбирается в соответствии с величиной нагрузки, на которую рассчитан трансформатор. Конечно же, выбирая релейную защиту данного устройства, стоит учесть также пусковые кратковременные токи, которые возникают при запусках электрических вращающихся машин. Работа таких защит основана на трансформаторах тока, вот парочка самых распространённых схем подключения.

Здесь имеется два уровня (степени) отключения, один может быть отключением от перегрузов, а другой уже срабатывает как максимальная токовая отсечка, при значительном повышении тока в контролируемых цепях, в том числе и при К.З. Цифрой 6 обозначены измерительные приборы.

Схема 2

Ниже представлена более усовершенствованная и развёрнутая схема уже непосредственно с подключением реле в цепи катушек маслинных выключателей.

Виды повреждений

Повреждения трансформаторов
Рис. 1. Повреждения трансформаторов

В связи с тем, что трансформатор включается в работу совместно с другими устройствами, любые повреждения на питающей линии, в низковольтных цепях или внутри бака одинаково опасны.

Среди актуальных видов аварий следует отметить следующие:

  • Короткое замыкание между обмотками;
  • Замыкание обмотки на корпус;
  • Межфазные замыкания в линии;
  • Межвитковые замыкания;
  • Повреждение встроенного оборудования;
  • Перегрев мест подключения, электрических контактов;
  • Обрыв в цепи, нарушение целостности точек подключения или обмоток;
  • Нарушение крепления железа, расшихтовка листов при ослаблении стяжек ярма с последующим перекрытием или разрушением витков.

Принцип работы ограничителя перенапряжений

Защитное действие ограничителя перенапряжений обусловлено тем, что появление опасного для изоляции перенапряжения, вследствие высокой нелинейности резисторов через ограничитель перенапряжений протекает значительный импульсный ток, в результате чего величина перенапряжения снижается до уровня, безопасного для изоляции защищаемого оборудования.

В нормальном рабочем режиме ток через ограничитель имеет емкостный характер и составляет десятые доли миллиампера. Но при возникновении перенапряжений резисторы ОПН переходят в проводящее состояние и ограничивают дальнейшее нарастание перенапряжения до уровня, безопасного для изоляции защищаемой электроустановки. Когда перенапряжение снижается, ограничитель вновь возвращается в непроводящее состояние.

Вольтамперная характеристика ограничителя состоит из 3 участков (рис. 5):

  1. — область малых токов;
  2. — область средних токов;
  3. — область больших токов.

В первой области варисторы работают под рабочим напряжением, не превышающим наибольшее допустимое рабочее напряжение (сопротивление варисторов велико, через них протекает очень малый ток утечки). В режим средних токов варистор переходит при возникновении перенапряжения в сети. При этом на границе 1 и 2 областей происходит перегиб ВАХ, сопротивление варисторов существенно уменьшается и через них протекает кратковременный импульс тока. Варистор поглощает энергию импульса и рассеивает её в окружающее пространство в виде тепла. За счёт поглощения энергии импульс перенапряжения резко падает. Третья область для ограничителя является аварийной, сопротивление варисторов в ней вновь резко возрастает.

Осциллограммы перенапряжений, возникающих при коммутации ВВ без ОПН и с ОПН показаны на рис. 7 и рис. 8.

Осциллограммы перенапряжений при коммутации ВВ без ОПН.
Рис. 7. Осциллограммы перенапряжений при коммутации ВВ без ОПН.Осциллограммы перенапряжений при коммутации ВВ с ОПН.
Рис. 7. Осциллограммы перенапряжений при коммутации ВВ без ОПН.

Рис. 8. Осциллограммы перенапряжений при коммутации ВВ с ОПН.

Вторая группа мероприятий — это усиление изоляции входных витков; установка емкостных колец и электростатических экранов (емкостная компенсация).

Емкостные кольца представляют собой разомкнутые шайбообразные экраны, изготовляемые из металлизированного электрокартона. Этими кольцами прикрывают начало и конец обмотки, тем самым поднимают кривую начального распределения напряжения, приближая ее к кривой конечного распределения.

Уменьшение неравномерности начального распределения напряжения и сближение его с конечным распределением достигаются применением в трансформаторах дополнительных электростатических экранов в виде разомкнутых металлических колец (витков), охватывающих начальную часть обмотки и соединенных с ее вводом. Такой экран создает дополнительные емкости, через которые заряжаются поперечные емкости в обход продольных емкостей.

В результате кривая начального распределения напряжения значительно спрямляется и становится почти такой же, как и кривая конечного распределения для обмоток с заземленной нейтралью. Трансформаторы с изолированной нейтралью также могут снабжаться электростатическими экранами, но в этом случае применяют специальные устройства импидоры, включаемые между нейтралью и землей. Это устройство содержит емкость, включенную параллельно разряднику и реактору, которая при волновых процессах заземляет нейтраль трансформатора, а при промышленной частоте имеет большое сопротивление и практически изолирует нейтраль.

Деление защит трансформаторов на основные и резервные

Любой вид повреждения в трансформаторе несет потенциальную опасность, как целостности оборудования, так и надежности работы всей энергосистемы. Поэтому крайне важно грамотно отстраивать работу защит на электростанциях, тяговых и трансформаторных подстанциях, местных КТП и ТП. Для этой цели защита трансформатора условно подразделяется на две категории – основную и резервную.

Основная защита – это такой вид автоматики, который направлен на анализ внутреннего состояния трансформатора (обмоток, железа, дополнительного оборудования). Данный тип охватывает как само устройство, так и  прилегающие к нему шины, провода и т.д.

Резервная защита охватывает те нарушения в работе, которые происходят за пределами трансформатора, но могут непосредственно повлиять на его проводники и внутренние элементы. Это всевозможные перегрузки, замыкания и перенапряжения в линиях, на смежных устройствах и т.д.

Основные и резервные защиты
Рис. 2. Основные и резервные защиты

Разновидности защит и их суть

Все защиты для трансформаторов должны обладать достаточным быстродействием, чтобы вовремя отключить опасный режим. Так как при возникновении сверхбольших электрических величин он запросто приведет к разрушению изоляции, отпуску металла, возгораниям и прочим неприятным последствиям.

Для предотвращения перегрузок выполняется установка того или иного вида защиты на трансформатор. Какая именно защита используется на понижающих подстанциях, в оборудовании распределительных устройств, определяется местными условиями и особенностями режима работы.

Продольная дифференциальная защита

Область применения дифференциальной токовой защиты охватывает как сам силовой трансформатор, так и окружающие его присоединения вплоть до измерителей токовой нагрузки. Нормальным режимом работы каждого трансформатора считается равномерное перераспределение нагрузки между всеми тремя фазами, когда электрический ток в каждой из них получается приблизительно одинаковым.

Продольные дифференциальные защиты осуществляют сравнение токовой нагрузки во всех фазах. Так как ток примерно одинаков, то их геометрическая сумма должна равняться нулю. В результате сравнения получается, что токовая составляющая отсутствует или слишком мала для реакции. Но, как только произойдет замыкание одной фазы или сразу между несколькими, токи в них перестанут компенсировать друг друга, и их сумма будет отличаться от нуля, сработает дифференциальная отсечка.

Пример дифференциальной защиты

Рис. 3. Пример дифференциальной защиты

Релейная

Для предотвращения повреждения трансформаторов применяется достаточно большое количество релейных защит. Однако отдельного внимания заслуживает реле контроля уровня масла. Этот вид предусматривает контроль за состоянием изоляционной среды. Конструктивно реле представляет собой поплавок с контактами, который удерживается выше контактов цепи срабатывания.

Если аварийный режим приведет к утечке масла и последующему снижению менее нормы, после которой может произойти пробой, произойдет отключение. Может располагаться в основном баке или иметь резервную релейную защиту в расширителе, которая предварительно даст сигнал о начале процесса.

Тепловая

Основой для тепловой защиты в трансформаторах служит классическая термопара. Место ее расположения определяется типом устройства, его мощностью и габаритами, так как перегрев может привести к нарушению изоляционных свойств, привести к термическому расширению масла.

К наиболее эффективным местам размещения относятся:

  • в верхней части бака;
  • у высоковольтных вводов;
  • в обмотках.

Имеет две ступени – первая производит включение резервных вентиляторов или других средств охлаждения. Вторая, если первой не удалось сбросить перегрев ниже предельного значения, производит отключение трансформатора.

Токовая отсечка

Пример токовой отсечки
Рис. 4. Пример токовой отсечки

Данный вид защиты применяется для отключения повреждения, которое могло возникнуть внутри трансформатора. Она размещается со стороны вводов защищаемого трансформатора, однако воздействие охватывает все обмотки, с которых может быть подано напряжение. Особенностью ее применения является схема питания, которая используется в соответствующей линии.

Так для трехфазных цепей с изолированной нейтралью токовая отсечка должна устанавливаться в двух фазах. А при использовании цепей с глухозаземленной нейтралью защита должна применяться в каждом фазном присоединении. При отключении трансформатора полностью отсутствует какая-либо выдержка времени.

Недостатком отсечки является срабатывание исключительно на токи большой величины. Поэтому некоторые межфазные КЗ, межвитковых или КЗ на землю в цепи с изолированной нейтралью могут остаться незамеченными.  На практике это один из самых простых способов, отключающих трансформатор в аварийном режиме.

Газовая защита

Газовое реле, как вид защиты, нашло широкое применение в маслонаполненных трансформаторах, где роль диэлектрика, разделяющего токоведущие элементы и заземленную конструкцию корпуса, выполняет трансформаторное масло. В нормальном режиме работы понижающие трансформаторы не воздействуют на жидкий диэлектрик, и масло пребывает в постоянном физическом состоянии.

Но, в случае возникновения межвитковых замыканий, контакта проводников со сталью или других ситуаций внутри бака горение дуги или разогрев металла приводит к локальному закипанию масла. От этого места и начинается выделение газов, которые поднимаются в верхнюю точку емкости.

Пример газовой защиты
Рис. 5. Пример газовой защиты

Для всей емкости верхняя точка – это расширительный бак, поэтому устанавливают газовое реле в соединительной трубе между расширителем и баком трансформатора. Конструктивно газовая защита представляет собой поплавок, с двумя контактами. При погружении в масло поплавок находится в незамкнутом положении. Как только выделившиеся газы поднимутся по трубе, поплавок упадет и замкнет контакты, масляный трансформатор отключится.

Струйная защита

Используется в трансформаторах с первичными и вторичными обмотками на 110, 35, 10, 6, 3,3кВ, где присутствует возможность переключения величины напряжения под нагрузкой. Устройство РПН, как правило, размещается в отдельном баке внутри основного, который изолирует его от высоковольтных обмоток. Переключение позиций РПН под нагрузкой может обуславливать как штатные коммутационные явления, так  и аварийные. Последние приводят к выбросу масла от бака к расширителю.

Для реакции на такие повреждения и устанавливается струйная защита, так как поток масла от РПН активирует измерительный датчик. Далее происходит отключение выключателя, который обесточит обмотки трансформатора.

Максимальная токовая защита

Пример максимальной токовой защиты
Рис. 6. Пример максимальной токовой защиты

Максимальная токовая защита применяется для срабатывания в ответ на токи КЗ, расположенные в непосредственной близости к источнику. Сюда относятся повреждения как на обмотках, так и на ближайших шинах подстанции, в окружающем оборудовании и ит.д.

На практике выделяют большое количество вариантов исполнения МТЗ:

  • От внутренних и внешних КЗ;
  • МТЗ с комбинированным пуском по напряжению;
  • МТЗ с  пуском по напряжению и фильтром  напряжения обратной последовательности;
  • Обратной последовательности комбинированная с устройством против трехфазных КЗ;

Помимо аварийных режимов для МТЗ может устанавливаться режим защиты от перегрузки. Для этого устанавливается ток срабатывания в определенных пределах. Уставка выбирается исходя из максимального значения нагрузки, чтобы не происходило срабатывания автоматического выключателя в нормальном режиме работы.

Токовая защита нулевой последовательности

Пример токовой защиты нулевой последовательности
Рис. 7. Пример токовой защиты нулевой последовательности

Предназначена для защиты трансформатора от возможного замыкания как одной, так и двух фаз на землю. Это те ситуации, когда в трехфазной системе нарушится симметрия нагрузки и относительно нулевой точки сумма токов больше не будет равна нулю.

Равновесие системы нарушится, что и спровоцирует отключение питания спустя заданный временной промежуток. Часто комбинируется с АПВ, тогда через несколько секунд происходит повторное включение выключателя, на случай если замыкание самоустранилось.

Специальная резервная защита

Специальная резервная защита предназначена для автономного резервирования МТЗ по токовым цепям. Может использоваться как по высокой, так и по низкой стороне трансформатора. Их действие нацелено на первичные и вторичные максимальные токи, которые могут возникнуть в непосредственной близости от защищаемого объекта. Работа СРЗ, как правило, имеет выдержку по времени относительно основных МТЗ по стороне 110 – 220 кВ.

Токовая ступенчатая защита

Как и предыдущий вариант, представляет собой разновидность МТЗ, которая выстраивается в ключе последовательности срабатывания для разных обмоток. Широко используется в цепях, где потребители подключаются к источнику с большими пусковыми токами. Однако чувствительность максимальной защиты имеет дополнительную привязку к напряжению, что и обеспечивает блокировку автоматического отключения в случае запитки слишком мощной нагрузки, так как просадка напряжения не достигает установленного предела.

Ступени отстраиваются с таким временным промежутком, чтобы воздействие на выключатели нагрузки производились после основной токовой защиты.

Защита от минимального напряжения

В случае снижения питающего напряжения возможны два варианта развития событий – удаленное короткое замыкание, которое другими защитами распознается как большая нагрузка или подключение слишком большой суммарной нагрузки. И тот и другой вариант пагубно сказывается на работе трансформатора, поэтому  и при аварийном режиме, и при перегрузке устанавливается выдержка времени, после которой происходит один из таких вариантов:

  • отключение аварийного участка;
  • вывод  неприоритетных потребителей из работы;
  • автоматическое включение резерва.

Защита печных трансформаторов

Особенности работы и применения резонансного трансформатора Тесла

Работа печей связана с резким нарастанием и снижением тока, поэтому дифференциальную защиту здесь применять не рекомендуется, а только газовую и тепловую. Нагревательные элементы таких печей могут работать от пониженного напряжения от 220–660 Вольт. Чаще всего здесь применяются специальные электропечные трансформаторы. Конечно же, речь идёт от печах для плавки металла, а не для приготовления пищи. В них режимы плавки меняются как питающим напряжением, так и величиной тока дуги. Печные трансформаторы должны быть оборудованы защитой от перегрузок, а также при возникновении К. З. Защиту от перегрузок устанавливают на низкой стороне, а трансформаторы тока для мгновенного срабатывания на высокой стороне. При этом уставку реле настраивают таким образом, чтобы она не отключалась при нормальных эксплуатационных К. З, ведь они работают в таком режиме и при некоторых коротких замыкания отключение не должно происходить, а только лишь поднятие электродов.

В любом случае в итоге хочется отметить что от настройки и правильности срабатывания зависят последствия ненормальных режимов работы трансформатора, а значит и стоимость последующего ремонта.

Защита трансформатора дифференциальная

Это одна из самых быстродействующих и важных защит, которая необходима для надёжной эксплуатации следующих трансформаторов:

  1. На понижающих одиночно работающих трансформаторах мощность которых выше чем 6300 кВА;
  2. При параллельной работе данных устройств с мощностью 4000 кВА и выше. При этом таком подключении данная защита является гарантией не только быстродействия, но и селективного отключения только того устройства, которое повреждено, а не полного обесточивания питаемого электрооборудования повлекшее за собой потери в производстве продукции или в появлении бракованных изделий;
  3. Если МТЗ трансформатора не даёт необходимой чувствительности и скорости отключения, и может срабатывать с выдержкой времени более одной секунды;
  4. Если трансформаторы меньшей мощности, то применяется обычная токовая отсечка, подключенная к реле тока.

а — нормальная работа, б — при возникновении короткого замыкания между обмотками.

Принцип действия дифференциальной защиты основан на сравнении тока, а точнее, его величины. Сравнивание происходит в конце и в начале защищаемого участка. Участком в данном случае служит одна из понижающих обмоток. То есть один трансформатор тока устанавливается с высокой, а другой с низкой стороны.

На схеме видно подключение трансформаторов ТТ1 и ТТ2 соединенных последовательно. Т — это реле тока, которое остаётся в бездействии при нормальной работе, когда токи одинаковы, то есть их разность будет равна нулевому значению. Во время возникновения короткого замыкания в защищаемом участке цепи появится разность токов и реле втянется, тем самым отключив трансформатор от сети. Такой вид защиты будет срабатывать как при межвитковых, так и при межфазных замыканиях. Мгновенная работа такого защитного оборудования не требует выдержки времени, так как её быстрое срабатывание является её основным положительным фактором. Выбор вставки срабатывания реле Т должен выполнятся электротехническими лабораториями или же проектировщиками данного оборудования. Для каждого конкретного случая уровень тока втягивания реле можно изменять, чтобы не было ложных срабатываний.

Принцип действия газовой защиты трансформаторов

Газовая защита силовых трансформаторов основана на работе газового реле, которое и изображено на рисунке.

В специальном окошке при выделении газов можно увидеть пузырьки.

Реле представляет собой металлический сосуд, в котором расположены два специальных поплавка. Они врезаны в наклонный трубопровод. В свою очередь, данный трубопровод является связывающим звеном между охлаждающий корпусом имеющим радиатор и  расширительным баком.

Если трансформатор находится в рабочем исправном состоянии газовое реле его наполнено трансформаторным маслом, а поплавки реле находятся в определённом нерабочем состоянии, так как внутри их масло. Поплавки непосредственно соединены с контактной группой, которая имеет аварийный и предупредительный сигнал. В нормальном состоянии контакты находятся в разомкнутом положении. При нагреве масла в случае ненормального процесса в работе из него выделяется газ, который по закону физики легче, естественно, подымается вверх. На пути газов находится газовое реле и его поплавки, которое при накоплении определённого количества поднимающего его газа начинает движение, чем и размыкает первую ступеньку. При более бурном развитии событий и второй поплавок приводится в движение и замыкает уже вторую ступень которая приводит к отключению. Взятие пробы масла и его проверка, а также химический анализ позволяет определить суть повреждения.

Из практики же не каждое срабатывание газового реле приводит к взятию проб и анализу масла, иногда при заливке может попасть в систему воздух которой во время эксплуатации будет подниматься и сможет стать причиной срабатывания данной защиты. Для этого нужно всего лишь открыть специальный краник (вентиль), находящийся на корпусе реле и выпустить воздух. Эта процедура выполняется при первом срабатывании предупредительного поплавка.

Выбор самого реле основывается на конструкции трансформатора и его габаритах. Очень часто применяются несколько типов данного устройства РГЧЗ-66, ПГ-22, BF-50, BF-80, РЗТ-50, РЗТ-80. Все они имеют смотровое окошко и герметичный корпус.

Газовая защита трансформатора и принцип действия, работы в принципе несложны стоит только один раз разобраться в них.

Максимальная токовая защита трансформатора

Основную роль отключающего устройства при повышении критического уровня тока, для трансформаторов не масляных и обладающих малой мощностью, служит предохранитель. Такой элемент защиты даёт возможность персоналу, не понимающему причины отключения, повторно произвести включение, которое может принести вред оборудованию или пожар. Предохранителями оборудованы также измерительные трансформаторы напряжения, которые расположены на подстанциях в ячейках КРУ, в таких же, как и масляные выключатели. Они предназначены для измерения напряжения в сети 6000 кВ и выше, а также для цепей защиты от повышенного или пониженного напряжения.

Для трансформаторов выбор предохранителей осуществляется из такого соотношения

Iвс — ток плавкой вставки предохранителя;

Iн. тр. — номинальный ток первичной обмотки трансформатора, в цепь которого он и устанавливается.

Предохранитель — самый простой способ защитить трансформатор от превышения тока.

Ток срабатывания максимальной защиты при установке её с низшей стороны, выбирается в соответствии с величиной нагрузки, на которую рассчитан трансформатор. Конечно же, выбирая релейную защиту данного устройства, стоит учесть также пусковые кратковременные токи, которые возникают при запусках электрических вращающихся машин. Работа таких защит основана на трансформаторах тока, вот парочка самых распространённых схем подключения.

Здесь имеется два уровня (степени) отключения, один может быть отключением от перегрузов, а другой уже срабатывает как максимальная токовая отсечка, при значительном повышении тока в контролируемых цепях, в том числе и при К.З. Цифрой 6 обозначены измерительные приборы.

Ниже представлена более усовершенствованная и развёрнутая схема уже непосредственно с подключением реле в цепи катушек маслинных выключателей.

Индивидуальная защита от непереключения фаз выключате­лей стороны среднего и высшего напряжения АТ

Защита выполняется только на выключателях с пофазным управ­лением.

Назначение защиты – ликвидация неполнофазного режима, воз­никающего при включении выключателя одной или двумя фазами.

Защита действует на отключение трех фаз включаемого выклю­чателя.

Выдержка времени защиты (0,15 ¶ 0,25 сек) выбрана по усло­вию отстройки от разновременности включения фаз выключателя.

Мероприятия для защиты обмоток от перенапряжений

Для защиты обмоток трансформаторов от перенапряжений применяются внешняя и внутренняя защита.

Первая группа мероприятий, внешняя защита — это применение заземленных тросов и ограничителей перенапряжений (ОПН). Эти меры позволяют ограничить амплитуду волн напряжения, подходящих к трансформатору. Хотя ПУЭ указывает также применение вентильных разрядников в качестве защитных мероприятий, но в настоящее время они все-таки повсеместно заменяются на ОПН из-за преимуществ последних.

Основная активная часть ОПН (рис. 3) состоит из набора варисторов, соединённых последовательно и составляющих так называемую «колонку». В зависимости от требуемых характеристик ОПН и его конструкции ограничитель может состоять из одной колонки или из ряда колонок, соединённых последовательно либо параллельно. Отличие материала варисторов ОПН от материала резисторов вентильных разрядников состоит в том, что у нелинейных резисторов ограничителей перенапряжения присутствует повышенная пропускная способность, а также высоко нелинейная вольт-амперная характеристика (ВАХ), благодаря которой возможно непрерывное и безопасное нахождение ОПН под напряжением, при котором обеспечивается высокий уровень защиты электрооборудования. Данные качества позволили исключить из конструкции ОПН искровые промежутки.

Материал нелинейных резисторов ОПН состоит в основном из оксида и оболочки в виде глифталевой эмали, повышающей пропускную способность варистора. В процессе изготовления оксид цинка смешивается с оксидами других металлов. Варисторы на основе оксида цинка являются системой, состоящей из последовательно и параллельно включённых p — n переходов. Именно эти p — n переходы определяют нелинейность ВАХ варистора.

Устройство ОПН
Рис. 3. Устройство ОПН

ОПН конструктивно представляет собой колонку варисторов, заключённых в высокопрочный полимерный корпус из высокомолекулярного каучука (в случае полимерной изоляции прибора), либо колонку варисторов, прижатую к боковой поверхности стеклопластиковой трубы, расположенной внутри фарфора (в случае фарфоровой изоляции). В ОПН с полимерной изоляцией пространство между стеклопластиковой трубой и колонкой варисторов заполняется низкомолекулярным каучуком, а сама труба имеет расчётное количество отверстий для обеспечения взрывобезопасности конструкции при прохождении токов короткого замыкания. У ограничителей перенапряжений с фарфоровой изоляцией на торцевых сторонах покрышки располагают мембраны и герметизирующие резиновые уплотнительные кольца, а на фланцах устанавливают специальные крышки с выхлопными отверстиями. На крышке ограничителя перенапряжений имеется контактный болт для подключения к токоведущей шине. ОПН снабжён изолированной от земли плитой основания. Внутренняя стеклопластиковая труба, мембраны и крышки обеспечивают взрывобезопасность конструкции при прохождении токов короткого замыкания.

Характеристики различных модификаций ОПН приведены на рис.4.

Вольтамперная характеристика ОПН представлена на рис. 5.

Внешний вид ОПН различных конструкций приведен на рис. 6.

Характеристики различных модификаций ОПН.
Рис. 4. Характеристики различных модификаций ОПН.Вольтамперная характеристика ОПН.
Рис. 4. Характеристики различных модификаций ОПН.

Рис. 5. Вольтамперная характеристика ОПН.Внешний вид различных конструкций ОПН
Рис. 6. Внешний вид различных конструкций ОПН

Защита от неполнофазного режима на стороне 330 кВ (750) АТ (ЗНР-330)

Назначение защиты – ликвидация неполнофазного режима, воз­никающего при неполнофазном отключении одного выключателя 330 кВ АТ и трехфазном отключении второго выключателя 330 кВ АТ.

Защита, как правило, действует на отключение АТ со всех сторон.

Выдержка времени ЗНР-330 на 0,3 сек выше выдержки времени индивидуальной защиты от непереключения фаз выключателя.

На АТ-750кВ  для контроля состояния изо­ляции вводов 750кВ АТ применяется устройство КИВ-750.

Принцип действия устройства – измерение геометрической сум­мы токов, протекающих под воздействием рабочего напряжения через изоляцию вводов 750 кВ трех фаз.

При исправной изоляции геометрическая сумма токов, входящих в реле типа КИВ, близка к нулю. В случае частичного повреждения изоляции ввода одной из фаз появляется ток небаланса, который фиксируется защитой.

Устройство типа КИВ имеет измерительный элемент для опера­тивного контроля и отключающий элемент.

Отключающий элемент действует на отключение АТ со всех сто­рон.

Защита от перегрузки

В качестве такой защиты устанавливается токовая защита, действующая с выдержкой времени на сигнал в случае перегрузки по току любой обмотки трансформатора.

Видео: Релейная защита. Вводная лекция

Что такое релейная защита, для чего она нужна. Основные характеристики, которыми должна обладать релейная защита.

Оценка необходимости установки ОПН

В современных трансформаторных подстанциях, как внутризаводских, так отдельно стоящих, напряжение от внешнего источника электроэнергии подается на трансформатор через распределительное устройство высокого напряжения (РУВН). Одним из компонентов РУВН является вакуумный выключатель (ВВ). При наличии ВВ, как было описано выше могут возникать перенапряжения, приводящие в повреждению обмоток.

Однако в последнее время ведущие производители электрооборудования, такие как Shneider Electric, Eaton, предлагает малогабаритные распределительные устройства (РУ), которые имеют в своем составе коммутационное оборудование, лишенное недостатков, свойственных подробно описанным выше вакуумным выключателям.

Гашение электрической дуги в РУ производства Shneider Electric, RM6-ячейке осуществляется на основе принципа автодутья в элегазе что практически исключает срез тока и, соответственно, не приводит к возникновению перенапряжений. Т.е. здесь вопрос решен с помощью использования элегаза.

Компания Eaton в своем инновационном оборудовании Xiria решила вопрос в производимых ей компактных РУ конструктивным совершенствованием вакуумного выключателя. Здесь исключение среза тока достигается за счет разделение дуги на множество низкоэнергетических разрядов.

Как утверждают оба производителя, кратность коммутационных перенапряжений не превышает 1,4. А это полностью безопасно для обмоток трансформатора.

Таким образом, можно констатировать, что при использовании малогабаритных распределительных устройств Shneider Electric, RM6 и в РУ компании Xiria установка ОПН для защиты обмоток от перенапряжений не требуется.

Источники

  • https://fashionst.ru/zashchita-transformatorov-toka-ot-perenapryazheniy/
  • https://transformator220.ru/harakteristiki/silovye/osnovnye-zashhity-silovogo-transformatora.html
  • https://www.asutpp.ru/zashhita-transformatorov.html
  • https://www.elec.ru/publications/peredacha-raspredelenie-i-nakoplenie-elektroenergi/5609/
  • https://amperof.ru/elektropribory/osobennosti-primeneniya-i-srabatyvaniya-zashhity-transformatorov.html

Оцените статью
О трансформаторе