Currently set to Index
Currently set to Follow

Трансформаторы — назначение, виды и характеристики

Содержание
  1. Что такое трансформатор?
  2. Конструкция
  3. Принцип работы
  4. Трансформаторы на схемах
  5. Определение и назначение
  6. Устройство и принцип работы
  7. Магнитная система
  8. Обмотки
  9. В чем разница между трансформаторами тока и напряжения
  10. Разновидности
  11. Защитные ТТ
  12. Измерительные ТТ
  13. Устройство и принцип работы
  14. Работа ТТ поэтапно на примере схемы
  15. Важность коэффициента трансформации, класса точности, погрешности
  16. Монтаж, подключение, опасные факторы
  17. Как подключается ТТ
  18. Монтаж
  19. Расчет
  20. Проверка после расчета
  21. Классификации
  22. Силовой
  23. Измерительные
  24. Импульсный
  25. Автотрансформатор
  26. Разделительный
  27. Согласующий
  28. Пик-трансформатор
  29. Сдвоенный дроссель
  30. Сварочный
  31. Как сделать самостоятельно
  32. Как правильно подключить
  33. Условные обозначения
  34. Основные характеристики
  35. Область применения
  36. Типы трансформаторов
  37. Сварочные трансформаторы
  38. Силовые трансформаторы
  39. Тороидальные трансформаторы
  40. Закон Фарадея
  41. Для чего нужен трансформатор напряжения?
  42. Чем отличается трансформатор тока от трансформатора напряжения?
  43. Как работает трансформатор напряжения?

Что такое трансформатор?

Если коротко, то это стационарное устройство, используемое для преобразования переменного напряжения с сохранением частоты тока. Действие трансформатора основано на свойствах электромагнитной индукции.

Конструкция

Устройство трансформатора предполагает наличие одной либо большего числа отдельных катушек (ленточных или проволочных), находящихся под единым магнитным потоком, накрученных на сердечник, изготовленный из ферромагнетика.

Схема устройства трансформатора

Важнейшие конструктивные части следующие:

  • обмотка;
  • каркас;
  • магнитопровод (сердечник);
  • охлаждающая система;
  • изоляционная система;
  • дополнительные части, необходимые в защитных целях, для установки, обеспечения подхода к выводящим частям.

В приборах чаще всего можно увидеть обмотку двух типов: первичную, получающую электроток от стороннего питающего источника, и вторичную, с которой напряжение снимается.

Сердечник обеспечивает улучшенный обратный контакт обмоток, обладает пониженным сопротивлением магнитному потоку.

Некоторые виды приборов, работающие на сверхвысокой и высокой частоте, производятся без сердечника.

Производство приборов налажено в трех базовых концепциях обмоток:

  • броневой;
  • тороидальной;
  • стержневой.

Устройство трансформаторов стержневых подразумевает накручивание обмотки на сердечник строго горизонтальное. В приборах броневого типа она заключена в магнитопроводе, размещается горизонтально либо вертикально.

Надежность, эксплуатационные особенности, устройство и принцип действия трансформатора принимаются без какого-либо влияния принципа его изготовления.

Принцип работы

Принцип работы трансформатора базируется на эффекте взаимоиндукции.  Поступление тока переменной частоты от стороннего поставщика электроэнергии на вводы первичной обмотки формирует в сердечнике магнитное поле с переменным потоком, проходящего через вторичную обмотку и индуцирующее образование электродвижущей силы в ней. Закорачивание на приемнике электроэнергии вторичной обмотки обуславливает прохождение сквозь приемник электротока из-за влияния электродвижущей силы, вместе с тем в первичной обмотке образуется ток нагрузки.

Трансформатор 10/0.4 кВ

Назначение трансформатора — перемещение преобразованной электрической энергии (без перемены ее частоты) к вторичной обмотке из первичной с подходящим для функционирования потребителей напряжением.

Трансформаторы на схемах

Обозначается на принципиальных схемах трансформатор так:

Обозначение трансформатора на схемах

Обозначение трансформатора на схемах

На следующем рисунке изображен трансформатор с несколькими вторичными обмотками:

Трансформатор с двумя вторичными обмотками

Трансформатор с двумя вторичными обмотками

Цифрой «1» обозначена первичная обмотка (слева), цифрами 2 и 3 обозначены вторичные обмотки (справа).

Определение и назначение

Для питания приборов нужны напряжения различных характеристик. Трансформатор — это конструкция для использования индукционной работы магнитного поля. Ленточные или проволочные катушки, объединенные общим потоком, понижают или увеличивают напряжение. В телевизоре применяется 5 В для работы транзисторов и микросхем, питание кинескопа требует нескольких киловольт при использовании каскадного генератора.

Изолированные обмотки располагаются на сердечнике из спонтанно намагниченного материала с определенным значением напряженности. Старые агрегаты использовали существующую частоту сети, около 60 Гц. В современных схемах питания электроприборов применяют импульсные трансформаторы с высокой частотой. Переменное напряжение выпрямляется и преобразовывается при помощи генератора в величину с заданными параметрами.

Напряжение стабилизируется благодаря управляющей установке с импульсно-широтной модуляцией. Высокочастотные всплески передаются трансформатору, на выходе получают стабильные показатели. Массивность и тяжесть приборов прошлых лет сменяется легкостью и небольшими размерами. Линейные показатели агрегата пропорциональны мощности в отношении 1:4, для уменьшения габаритов устройства увеличивается частота тока.

Массивные приборы используют в схемах электроснабжения, если требуется создать минимальный уровень рассеяния помех с высокой частотой, например при обеспечении качественного звука.

ulichniy transformator

Устройство и принцип работы

Производитель выбирает базовые правила функционирования агрегата, но это не влияет на надежность эксплуатации. Отличаются концепции процессом изготовления. Принцип действия трансформатора основывается на двух положениях:

  • изменяющееся движение направленных носителей заряда создает переменное магнитное силовое поле;
  • влияние на силовой поток, передаваемый через катушку, продуцирует электродвижущую силу и индукцию.

Устройство состоит из следующих частей:

  • магнитный привод;
  • катушки или обмотки;
  • основа для расположения витков;
  • изолирующий материал;
  • охладительная система;
  • другие элементы крепления, доступа, защиты.

Работа трансформатора осуществляется по виду конструкции и сочетания сердечника и обмоток. В стержневом типе проводник заключен в обмотках, его трудно рассмотреть. Витки спирали видны, просматривается верх и низ сердечника, ось располагается вертикально. Материал, из чего состоит виток, должен хорошо проводить электричество.

В изделиях броневого типа стержень скрывает большую часть оборотов, он ставится горизонтально или отвесно. Тороидальная конструкция трансформаторов предусматривает расположение на магнитопроводе двух независимых обмоток без электрической связи между собой.

Магнитная система

Выполняется из легированной трансформаторной стали, феррита, пермаллоя с сохранением геометрической формы для продуцирования магнитного поля агрегата. Проводник конструируется из пластин, лент, подков, его изготавливают на прессе. Часть, на которой располагается обмотка, называются стержнем. Ярмо — это элемент без витков, выполняющий замыкания цепи.

Принцип действия трансформатора зависит от схемы стоек, которая бывает:

  • плоская — оси ярм и сердечников находятся в единой плоскости;
  • пространственная — продольные элементы устраиваются в разных поверхностях;
  • симметричная — одинаковые по форме, размеру и конструкции проводники расположены ко всем ярмам аналогично другим;
  • несимметричная — отдельные стойки отличаются по виду, габаритам и ставятся в разных положениях.

Если предполагается, что через обмотку, которую называют первичной, протекает постоянный ток, то магнитный провод делают разомкнутым. В остальных случаях сердечник закрытый, он служит для замыкания силовых линий.

Обмотки

Делают в виде совокупности витков, устраиваемых на проводниках квадратного сечения. Форма используется для эффективной работы и повышения коэффициента заполнения в окне магнитопровода. Если требуется увеличить сечение сердечника, то его выполняют в виде двух параллельных элементов, чтобы уменьшить возникновение вихревых токов. Каждый такой проводник называется жилой.

Стержень оборачивается бумагой, покрывается эмалевым лаком. Иногда два сердечника, расположенных параллельно, заключают в общую изоляцию, комплект называется кабелем. Обмотки различают по назначению:

  • основные — к ним подводится переменный ток, выходит преобразованный электроток;
  • регулирующие — в них предусмотрены отводы для трансформации напряжения при невысокой силе тока;
  • вспомогательные — служат для снабжения своей сети с мощностью меньше номинального показателя трансформатора и подмагничивания схемы постоянным током.

obmotka

Способы обкручивания:

  • рядовая обмотка — обороты делают в направлении оси по всей длине проводника, последующие витки наматывают плотно, без промежутков;
  • винтовое обматывание — многослойная обвивка с просветами между кольцами или заходом на соседние элементы;
  • дисковая накрутка — спиральный ряд выполняется последовательно, в круге обвивание производится в радиальном порядке по внутреннему и наружному направлению;
  • фольговая спираль ставится из алюминиевого и медного широкого листа, толщина которого колеблется в пределах 0,1-2 мм.

В чем разница между трансформаторами тока и напряжения

Если рассматривать вопрос, чем отличается трансформатор тока от трансформатора напряжения, то это алгоритм действия, назначение и компоновка, но иногда внешне приборы могут быть схожими.

В чем разница между трансформаторами тока и напряжения

Тока (ТТ) Напряжения (ТН, силовые)
Принцип действия трансформатора тока необходимо отличать: у ТТ нет узкого диапазона номинала вторички и ее ток зависит от такового (измеряемого) первичных витков, поэтому первая всегда замыкается при подсоединенной нагрузке. Монтаж трансформаторов напряжения отличается и по этому пункту.

Первичка может быть с одним витком через окно магнитопровода. На другой катушке строго определенный номинал.

Основное отличие: функционирует как источник тока со значением защищаемого участка. Данная величина почти независима от нагрузок на вторичке.

Как работает трансформатор напряжения: при переходе между катушками (всегда много витков) меняются характеристики именно питания под параметры потребителя. То есть изоляция и защита тут на втором месте, имеют другую природу. Нагрузка может варьироваться в пределах возможностей изделия.
Цель — изолирование измерителей от высоких мощностей, для контроля, измерений электросетей. Трансформаторы напряжения назначение режим работы и принцип действия имеют иные, чем ТТ. Цель — преобразование мощности для питания нагрузок разного номинала. Напряжение, продуцируемое электростанциями чрезвычайно высокое. Для подвода энергии применяют понижающие модели, а при передаче на большие расстояния (когда возможны потери) — повышающие.
На ЭУ, станциях, где подведена чрезвычайно мощная сеть до такой степени, что требуется дополнительная изоляция даже для замеров. Для чего нужен трансформатор напряжения: эксплуатация бытовых и подобных электроустройств. Для «подгонки» под приемники энергии, благодаря чему возможно везде пользоваться универсальной сетью. Напряжение изменяется под потребности потребителя, становится подходящим для любой техники.
Встроен почти в каждый бытовой прибор, есть в общедомовых сетях.

Импульсные трансформаторы

Наличие в ЭУ слабо и среднемощных ТТ обезопасит работы — элемент разделяет цепи высоких/низких мощностей, упрощает измерители, реле.

Устройства, например, способны осуществлять понижение с тысяч ампер до 5 А, 1 А.

Разновидности

Есть много видов ТТ, но в наиболее общем виде выбор трансформаторов тока учитывает, что изделия подразделяются на измерительные (ТТИ) и для защиты.

встроенный тт

наружный тт

Фактор разделения Виды
Назначение
  • защита или контроль (измерение);
  • промежуточные — для замеров, выравнивания токов в АВДТ;
  • лабораторные.
Конструкция В обмоточных первичка включена последовательно в измеряемый проводник. В тороидальных вместо нее — линия сети (в отверстии ТТ), а в стержневых в ее роли — кабель цепи, что эквивалентно 1 витку.
Монтаж
  • для размещения снаружи (в ОРУ), или внутри (в ЗРУ);
  • встраиваемые (в ЭУ, измерителях, коммутационных агрегатах);
  • накладные;
  • для переноски (для лабораторий, тестирования).
Количество витков
  • с множеством витков (петлеобразные, восьмеркой);
  • одновитковые.
Изоляция
  • сухая: (фарфор, эпоксид, бэкелит);
  • промасленное покрытие;
  • компаунд.
Ступени Одна или больше (каскадные)
Под какой номинал До 1 кВ и выше (например, для тока 10 кВ)

опорный тт

Токовый трансформатор может выполняться с возможностью открывать его, устанавливать и запирать, без отключения, в онлайн режиме.

разъемный трансформатор

Защитные ТТ

Трансформаторы защитные обычно релейного типа, «следят», чтобы проводящий манипуляции, влезающий в электросети электростанции, не получил смертельный удар. Внутри электросистем, создающих, транспортирующих, распределяющих энергию, для корректной работы присутствуют опасные значения. Но любое оборудование требует проверки, починки, обслуживания, поэтому оставляют «окно» безопасности в виде ТТ для специалистов-ремонтников.

Измерительные ТТ

Задача измерительного трансформатора тока ТТИ — преобразовывать величины, создавая возможность подсоединять вольтметр, амперметр, другой измеритель, не боясь, что он перегорит от чрезмерной нагрузки. При этом получают максимально точные, достоверные данные измерений. Другими словами, ТТ изолирует подключаемый девайс, не только для замеров, но и любой другой по потребности, от высоких мощностей.

устройство измерительного трансформатора тока

измерительный трансформатор

Устройство и принцип работы

В основе работы — электромагнитная индукция. Аппарат разделяет высоковольтные токонесущие части и трансформирует величины энергии до безопасных или требуемых.

принцип работы

Суть работы ТТ. Если через первичку идет переменный определенной силы ток, то вторичная катушка, будучи с постоянной активной нагрузкой, например (резистор или обслуживаемая ЭУ), создает на них падение напряжения пропорционально току первички (зависимо от коэффициента трансформации) и сопротивлению. Напряжение уменьшается в максимально возможном диапазоне, возможности понижения почти бесконечные.

обмотка

Устройство, схема трансформатора тока:

  • две (реже больше) обмотки на магнитопроводе из электростали:
  • первичная (включаемая в сеть). Это любая токопроводящая жила;
  • вторичная (от нее энергия подается к приемнику). Одиночная или групповая снабжается несколькими выводами для защитных цепей, приборов измерения и контроля;
  • выводы, клеммы.

схема трансформатора тока

Первичные витки подсоединяются последовательным методом, поэтому там полная нагрузка, вторичная же замыкается на нее (реле защиты, счетчики), пропуская ток пропорциональный  величине на первой. Сопротивление измерителей малое и считается, что все трансформаторы тока функционируют в состоянии КЗ.

Есть несколько вариантов вторичных обмоток, обычно они создаются для подсоединения защитных приспособлений и для приборов контрольных, учетных. К катушкам обязательно должна подключаться нагрузка со строго регламентированным сопротивлением — даже ничтожные отклонения приводит к критическим погрешностям замеров, не селективности РЗ.

Работа ТТ поэтапно на примере схемы

принцип работы тт

Трансформатор тока как устроен, принцип работы поэтапно:

  1. Через первичную цепь (кол. витков W1) идет ток I1, преодолевается ее полное сопротивление Z1.
  2. Вокруг катушки образуется магнитное направленное поле Ф1, улавливаемое стержнем стоящим перпендикулярно к вектору (I1) данной величины. Ориентация деталей делает потери энергии почти нулевыми.
  3. Пересекающий перпендикулярные по отношению к нему витки W2 поток Ф1 создает там движущую силу Е2.
  4. Из-за последней во вторичной катушке (Z2) появляется ток I2, преодолевающий сопротивление (ее и подсоединенной нагрузки Zн).
  5. На клеммах витков вторичной катушки возникает понижение напряжения U2. Одно магнитное поле Ф2 от вторичных витков I2 понижает другое Ф1 в стержне. Возникший в нем трансформаторный поток Фт определяют суммой векторов (Ф1 и 2).

Принцип работы, отличия трансформатора напряжения основываются на электромагнитных явлениях, как и в токовых. Но разница в количестве витков обмоток и назначении. Важно учесть цели, на которые конструкция рассчитана, трансформаторы напряжения обслуживают потребителей, поэтому «заточены» на трансформацию питания для электроприборов, ТТ — для защитных и измерительных устройств, а также они используются при осуществлении контроля и работают в режиме КЗ.

Важность коэффициента трансформации, класса точности, погрешности

Коэффициент трансформации (КТ) — определяет пропорциональность преобразования, задается при проектировании ТТ, при выпуске обязательно проверяется. На схеме это К1, определяемый соотношением l1/l2 (двумя векторами).

Коэффициент трансформации

Эффективность коэффициентов собранных изделий отображает класс точности. При реальном функционировании токовые величины не постоянные, поэтому коэффициент обозначают номинальным. Пример: 1000/5 — при 1 кА рабочего тока (первичного) во вторичной цепи действует нагрузка 5 А. Именно по описанным значениям и проводится расчет продолжительность эксплуатации этого трансформаторного тока.

Погрешность ТТ влияет на класс его точности и определяется сечением, уровнем проницаемости материала магнитопровода, величинами магнитного пути.

Коэффициент трансформации

Возрастание сопротивления нагрузки во вторичной цепи, превышающее возможности ТТ (при этом там генерируется повышенное напряжение), провоцирует пробой изоляции — трансформатор выходит из строя, перегорает. Поэтому важно правильно подбирать данный параметр. Предельное сопротивление есть в справочных материалах.

класс точности

Монтаж, подключение, опасные факторы

При пробое изоляции обмоток возникает возможность поражения током, но риск предотвращается заземлением вывода (обозначается на корпусе) вторички.

На выводы вторичной катушки И1 и И2 токи полярные, они обязательно постоянно подсоединены на нагрузку. Идущая по первичной цепи энергия со значительным потенциалом (S=UI). В другой происходит трансформация, и при обрыве в ней там падает напряжение. Потенциал разомкнутых концов при протекании энергии большой, что представляет значительную опасность.

По описанным выше причинам все вторичные цепи ТТ собирают особо тщательно и надежно, на них и кернах, выведенных из функционирования, всегда ставят шунтирующие закоротки.

Как подключается ТТ

Есть несколько схем для изделий защитного типа. Рассмотрим подключение ТТ на трехфазное напряжение.

Полная звезда:

  • самая распространенная, защита одно- и многофазных систем от КЗ;
  • три ТТ соединяются в звезду.

подключение ТТ на трехфазное напряжение

Если ток ниже настроек на реле КА1–КА3, то это нормальная ситуация, защита не активируется. Ток на К0 — это сумма всех 3 фаз. При возрастании величин в одной из них растет ток и в ТТ. Произойдет сработка реле при КЗ и при превышении нагрузок.

Неполная звезда:

  • защита от межфазных замыканий для создания цепей с нейтралью с заземлением;
  • для маломощных приемников с другими вариантами защиты.

Неполная звезда

Схема «треугольник и звезда» — для дифференциальной защиты.

треугольник и звезда

Схема без обесточивания при КЗ на землю используется, но редко по этой же причине. Для защиты от замыканий между фазами и всплесков в одной из них.

Схема без обесточивания

ТТИ подсоединяются простым последовательным подключением первичных витков изделия.

ТТИ

Монтаж

Монтаж трансформаторов тока:

  1. Ревизия устройства, проверка изоляции (должно быть выше 1 кОм на 1 В);
  2. Отключают ЭУ;
  3. Убедится в обесточивании, зафиксировать заземления.
  4. Разметка, установка креплений. Запрещено размещать трансформатор вплотную к ЭУ (минимальный зазор — 10 см).
  5. Выставляются таблички, ограждения.
  6. Первичные витки подсоединяются последовательно, но с нагрузкой на вторичных. Если нет возможности подключить измеритель, то ее контакты замыкают, чтобы не было высоких мощностей на ней, которые приведут его повреждению.

установленные тт

ТТ не допускает холостого функционирования, его режим близок к КЗ: вторичные витки при подключении прибора к измеряемому току обязательно замыкаются. Иначе происходит перегревание, повреждающее изоляцию. Перед отсоединением измерителей сначала закорачивают катушки. У некоторых моделей для этого есть узлы клеммы, перемычки.

Расчет

Расчет трансформатора тока можно провести по онлайн-калькуляторам, подобрать по номиналу (например, для 10 кВ). Но это слишком упрощенные инструменты. Исчисления и параметры для выбора — чрезвычайно обширная тема, поэтому опишем основы.

Расчет трансформатора тока

Точность чрезвычайно важная, поэтому потребуются тщательные исчисления специалистами. Необходимо знать множество специфических нюансов, например:

  • при разных схемах подсоединения, видах КЗ, есть разные формулы определения сопротивления;
  • проверяют первичный ток на термо- и электродинамическую стойкость;
  • есть свои нюансы для ТТ, для релейной защиты и для учетных целей, измерений.

пример Расчета трансформатора тока

Правила, как выбрать трансформатор тока в общих чертах:

  • номинальное рабочее напряжение ТТ должно превышать или сравниваться с номиналом ЭУ (стандартные значения 0.66, 3, 6, 10, 15, 20, 24, 27, 35, 110, 150, 220, 330, 750 кВ). Если обслуживаемое оборудование имеет 10 кВ, то изделие должно быть рассчитано на этот показатель;
  • первичный ток ТТ — больше номинального тока у ЭУ, но учитывая перегрузочную способность;
  • оценивают ТТ по номинальной мощности вторичной нагрузки, которая должны превышать расчетное ее значение. (Sном>=Sнагр);
  • оценивают размеры и расположение для установки, номинальные нагрузки (есть таблица), наработка до отказа, срок службы, класс точности.

схемы соединения

расшифровка маркировки

Проверка после расчета

Правила:

  • после расчета ТТ проверяют по загрузке при макс. и мин. значениях, протекающих через него нагрузок;
  • по п. 1.5. 17 ПУЭ при макс. подключенной нагрузке ток во вторичной катушке — не менее 40 % номинала счетчика, при мин. — не менее 5 %;
  • макс. загрузка должна быть от 40 %, а мин. — от 5 %, и в любом случае она не должна превышать 100 %, иначе возникнет перегрузка трансформатора;
  • если рассчитанные величины макс./мин. загрузок меньше 40 % и 5 % соответственно, то надо подбирать изделие с меньшим номиналом, а если этого нельзя сделать по параметрам макс. нагрузки, надо предусмотреть монтаж двух счетчиков — для макс. и мин. нагрузки.

Классификации

Трансформаторы классифицируются по ряду параметров, таким как:

  • Назначение. Применяются: для изменения напряжения, измерения тока, защиты электрических цепей, как лабораторные и промежуточные устройства.
  • Способ установки. В зависимости от размещения и мобильности трансформатор может быть: стационарным, переносным, внутренним, внешним, опорным, шинным.
  • Число ступеней. Устройства подразделяются на одноступенчатые и каскадные.
  • Номинальное напряжение. Бывают низко- и высоковольтными.
  • Изоляция обмоток. Наиболее часто используется бумажно-масляная, сухая, компаундная.

Помимо этого, преобразовательные устройства разнятся типами, каждому из которых присуща своя система классификации.

Силовой

Наибольшее распространение получил силовой трансформатор . Приборы с непосредственным преобразованием переменного напряжения, рассчитанные на большую мощность, востребованы различными областями электроэнергетики. Они применяются на линиях электропередач с напряжениями 35–1150 кВ, в городских электросетях, работающих с напряжением 6 и 10 кВ, в обеспечении конечных потребителей напряжением 220/380В. С помощью устройств осуществляется питание всевозможных электроустановок и приборов в диапазоне от долей до сотен тысяч вольт.

силовой
Силовой трансформатор

Измерительные

Трансформаторы тока (ТА) понижают ток до необходимых показателей. Схема их работы отличается последовательным включением первичной обмотки и нагрузки. В то же время вторичная обмотка, находящаяся в состоянии, близком к короткому замыканию, используется для подключения измерительных приборов, исполнительных и индикаторных устройств. С помощью ТА осуществляется гальваническая развязка, что позволяет при измерениях отказаться от шунтов.

Высоковольтный ТТ(слева) и низковольтный ТТ(справа)
Высоковольтный ТТ(слева) и низковольтный ТТ(справа)

С помощью трансформаторов напряжения (ТН) , тоже самое что и ТА только по напряжению. Помимо преобразования входных параметров, электроаппаратура и её отдельные элементы получают защиту от высокого вольтажа.

трансформатор напряжения
Высоковольтный ТН(слева) и низковольтный ТН(справа)

Импульсный

При необходимости преобразования сигналов импульсного характера применяются импульсные трансформаторы (ИТ). Изменяя амплитуду и полярность импульсов, устройства сохраняют их длительность и практически не затрагивают форму.

Автотрансформатор

В автотрансформаторах обмотки составляют одну цепь и взаимодействуют посредством электромагнитной и электрической связи. В отличие от других типов преобразователей, устройства могут содержать всего 3 вывода, позволяющих оперировать с различными напряжениями. Приборы выделяются высоким коэффициентом полезного действия, что особо сказывается при незначительном перепаде входного и выходного напряжения.

Однофазный(слева) и трёхфазный(справа)
Однофазный(слева) и трёхфазный(справа)

Не имея гальванической развязки, представители данного типа повышают риск высоковольтного удара по нагрузке. Обязательным условием работы устройств являются надёжное заземление и низкий коэффициент трансформации. Недостаток компенсируется меньшим расходом материалов при изготовлении, компактностью и весом, стоимостью.

Разделительный

Для разделительных трансформаторов взаимодействие между обмотками исключено. Устройства повышают безопасность электрооборудования при повреждённой изоляции.

Разделительный
Разделительный трансформатор

Согласующий

Согласующие трансформаторы применяются для выравнивания сопротивлений между каскадами схем электроники. Сохраняя форму сигнала, они играют роль гальванической развязки.

Пик-трансформатор

С помощью пик-трансформатора синусоидальное напряжение преобразуется в импульсное. При этом импульсы меняют полярность с каждым полупериодом.

Сдвоенный дроссель

Особенностью сдвоенного дросселя является идентичность обмоток. Взаимная индукция катушек делает его более эффективным, по отношению стандартным дросселям. Устройства используются как входные фильтры в блоках питания, в звуко- и цифровой технике.

Сдвоенный дроссель
Сдвоенный дроссель

Сварочный

Помимо вышеперечисленных, существует понятие сварочные трансформаторы. Специализированные приборы для сварочных работ понижают напряжение бытовой сети при одновременном повышении тока, измеряемого тысячами ампер. Регулировка последнего осуществляется разделением обмоток на сектора, что отражается на индуктивном сопротивлении.

Сварочный
Сварочный трансформатор

Как сделать самостоятельно

Итак, как сделать трансформатор самому? Зная, принцип работы установки и его конструктивные особенности, можно собрать своими руками простейший аппарат. Для этого вам понадобится любое металлическое кольцо, на котором надо накрутить два участка обмотки. Самое важно – обмотки не должны касаться друг друга, а место их намотки не зависит конкретно от их расположения. То есть, они могут быть размещена напротив друг друга или рядом. Важно – даже небольшое расстояние между ними.

Внимание! Трансформатор работает только от сети переменного тока. Так что не стоит подключать к вашему устройству батарейку или аккумулятор, где присутствует ток постоянный. Работать от этих источников электроэнергии он не будет.

Как уже было сказано выше, количество витков в обмотках определяет, какой прибор вы собираете – понижающий или повышающий. К примеру, если вы на первичной обмотке соберете 1200 витков, а на вторичной всего лишь 10, то на выходе вы получите напряжение 2 вольта. Конечно, при подключении первичной катушки к напряжению 220-240 вольт. Если фазировка трансформатора будет заменена, то есть, провести подсоединение 220 вольт к вторичной обмотке, то на выходе первичной получится ток напряжением 2000 вольт. То есть, к назначению трансформатора надо подходить осторожно, учитывая тот самый коэффициент трансформации.

Трансформатор своими руками

Как правильно подключить

Что касается монтажа трансформатора, особенно его понижающего типа в быту дома, то необходимо знать некоторые нюансы проводимого процесса.

  • Во-первых, это касается самого устройства. При монтаже трансформатора иногда появляется необходимость подключения не одного потребителя, а сразу нескольких. Поэтому обращайте внимание на количество выходных клемм. Конечно, необходимо знать, что суммарная потребляемая мощность потребителей не должна быть больше мощности самого трансформаторного устройства. Во всяком случае, специалисты рекомендуют, чтобы второй показатель был всегда больше первого на 15-20%.
  • Во-вторых, подключение трансформатора производится электрической проводкой. Так вот ее длина и до прибора, и после не должна быть очень большой. К примеру, понижающий аппарат для светодиодного освещения предполагает наличие проводки от него до светильников не больше двух метров. Это позволит избежать больших потерь мощности.

Схема подключения понижающего трансформатора
Схема подключения понижающего трансформатора

Внимание! Нельзя процесс монтажа трансформатора проводить и в том случае, если потребляемая мощность потребителей будет меньше мощности самого агрегата.

  • В-третьих, место установки электрического понижающего прибора должно быть выбрано правильно. Самое важное, чтобы до него всегда можно было бы добраться просто, особенно когда есть необходимость провести демонтаж со следующей заменой и монтажом трансформатора. Поэтому перед тем как подключить трансформатор, необходимо определиться с его местом установки.

Условные обозначения

Чтобы удобно читалась схема трансформатора, есть специальные знаки. Сердечник вычерчивается толстой линией, цифра 1 показывает первичную обмотку, вторичные витки обозначаются цифрами 2 и 3.

В некоторых схемах линия сердечника аналогична по толщине черте полуокружностей обвивки. Обозначение материала стержня различается:

  • магнитопровод из феррита чертят толстой линией;
  • стальной сердечник с магнитным зазором рисуют тонкой чертой с разрывом в середине;
  • ось из намагниченного диэлектрика обозначают тонким пунктиром;
  • медный стержень имеет на схеме вид узкой линии с условным обозначением материала по таблице Менделеева.

Для выделения катушечного вывода применяют жирные точки, обозначение мгновеннодействующей индукции одинаково. Используется для обозначения промежуточных агрегатов в каскадных генераторах для показания противофазности. Ставят точки, если требуется установить полярность при сборке и направление расположения обмоток. Число витков в первичной обмотке определяется условно, как не нормируется и количество полуокружностей, пропорциональность есть, но строго не соблюдается.

Основные характеристики

Холостой режим применяется при разомкнутом вторичном контуре трансформатора, в нем отсутствует напряжение. Ток проходит по первичной обвивке, возникает реактивное намагничивание. При помощи холостой работы определяют КПД, показатель трансформации и потери в сердечнике.

Функционирование под нагрузкой подразумевает подключение источника питания к первичной цепи, где протекает суммарный ток функционирования и холостого хода. Нагрузка подсоединяется к вторичному контуру трансформатора. Этот режим является распространенным.

Фаза короткого замыкания возникает, если сопротивление вторичной спирали составляет единственную нагрузку. В этом режиме определяются потери на нагревание катушки в цепи. Параметры трансформаторов учитываются в системе замещения прибора с помощью установки сопротивления.

Отношением потребляемой и отдаваемой мощности определяется коэффициент полезного действия трансформатора.

Область применения

Бытовые приборы имеют контакт с заземлением посредством нейтрального провода. Одновременное касание потребителем тока фазы и нулевой цепи ведет к замыканию контура и травме. Подключение через разделительный трансформатор позволяет обезопасить человека, т. к. вторичная обмотка не контактирует с землей.

Импульсные агрегаты используются при передаче прямоугольного толчка и трансформации коротких сигналов при нагрузке. На выходе изменяется полярность и амплитуда тока, но остается неизменным напряжение.

Измерительное оборудование постоянного тока является магнитным усилителем. Изменять переменное напряжение помогает направленное движение электронов небольшой мощности. Выпрямитель поставляет постоянную энергию и зависит от значений входного электричества.

Силовые агрегаты широко используются в генераторах тока малой величины, мощности, показатели в дизелях имеют средние значения. Трансформаторы монтируют последовательно с нагрузкой, прибор подключается к источнику первичной обмоткой, вторичный контур выдает преобразованную энергию. Значение выходного тока прямо пропорционально нагрузке. Используется оборудование с 3 магнитными стержнями, если генератор трехфазного тока.

Инвертирующие агрегаты имеют транзисторы одинаковой проводимости и на выходе усиливают только часть сигнала. Для полного преобразования напряжения импульс подается на оба транзистора.

Согласующее оборудование используют для подсоединения к электронным приборам с высоким сопротивлением на входе и выходе нагрузки с низким показателем прохождения электричества. Агрегаты полезны в высокочастотных линиях, где разница величин ведет к потерям энергии.

Типы трансформаторов

От номинального значения тока в первичном и вторичном контуре зависит классификация трансформаторов. В распространенных видах показатель находится в пределах 1-5 А.

Разделительный агрегат не предусматривает связь обеих спиралей. Оборудование обеспечивает гальваническую развязку, т. е. передачу импульса бесконтактным способом. Без нее протекающий между цепями ток ограничивается только сопротивлением, которое не принимается во внимание из-за малого значения.

Согласующий трансформатор обеспечивает согласование различных показателей сопротивления для минимизации искажения формы импульса на выходе. Служит для организации гальванической развязки.

Прежде чем выяснить, какие бывают трансформаторы силового направления, отмечают, что их выпускают для работы с сетями большой мощности. Приборы переменного тока изменяют показатели энергии в приемных установках и работают в местах с большой пропускной способностью и скоростью изменения электроэнергии.

Вращающий трансформатор не следует путать с вращающимся оборудованием — машиной для преобразования угла поворота в напряжение цепи, где эффективность зависит от частоты вращения. Прибор передает электроимпульс на подвижные части техники, например на головку видеомагнитофона. Двойной сердечник с отдельными обмотками, одна из которых поворачивается вокруг другой.

Масляный агрегат использует охлаждение катушек специальным трансформаторным маслом. Имеют магнитопровод замкнутого типа. В отличие от воздушных видов могут взаимодействовать с сетями большой мощности.

Сварочные трансформаторы для оптимизации работы оборудования, понижения напряжения и создания тока высокой частоты. Это происходит из-за изменения индуктивного сопротивления или показателей холостого хода. Ступенчатое регулирование выполняется компоновкой электрообмотки на проводниках.

vidy transformatorov

Сварочные трансформаторы

Существуют специальные сварочные трансформаторы.

Сварочный трансформатор

Сварочный трансформатор

Сварочный трансформатор предназначен для сварки электрической дугой, он работает как понижающий трансформатор, снижая напряжение на вторичной обмотке, до необходимой величины для сварки. Напряжение вторичной обмотки бывает не более 80 Вольт. Сварочные трансформаторы рассчитаны на кратковременные замыкания выхода вторичной обмотки, при этом образуется электрическая дуга, и трансформатор при этом не выходит из строя, в отличие от силового трансформатора.

Силовые трансформаторы

Электроэнергия передается по высоковольтным линиям от генераторов, где она вырабатывается до высоковольтных подстанций потребителя, в целях сокращения потерь, при высоком напряжении равном 35-110 киловольт и выше. Перед тем, как мы сможем использовать эту энергию, её напряжение нужно понизить до 380 вольт, которое подводится к электрощитовым, находящимся в подвалах многоквартирных домов. Трехфазные трансформаторы обычно бывают рассчитаны на большую мощность. В электросетях на трансформаторных подстанциях стоят трансформаторы понижающие напряжение с 35 или 110 киловольт, до 6 или 10 киловольт, наверное все видели такие трансформаторы величиной с небольшой дом:

Фото высоковольтный трансформатор

Фото высоковольтный трансформатор

Трансформаторы с 6-10 киловольт на 380 вольт расположены вблизи потребителей. Такие трансформаторы стоят на трансформаторных подстанциях расположенных во многих дворах. Они поменьше размерами, но вместе с ВН (выключателями нагрузки) которые ставятся перед трансформатором и вводными автоматами и фидерами могут занимать двух этажное здание.

Трансформатор 6 киловольт

Трансформатор 6 киловольт

У трехфазных трансформаторов обмотки соединяются не так, как у однофазных трансформаторов. Они могут соединяться в звезду, треугольник и звезду с выведенной нейтралью. На следующем рисунке приведена как пример одна из схем соединения обмоток высокого напряжении и низкого напряжения трехфазного трансформатора:

Пример соединения обмоток силового трансформатора

Пример соединения обмоток силового трансформатора

Трансформаторы существуют не только напряжения, но и тока. Такие трансформаторы применяют для безопасного измерения тока при высоком напряжении. Обозначаются на схемах трансформаторы тока следующим образом:

Изображение на схемах трансформатор тока

Изображение на схемах трансформатор тока

На фото далее изображены именно такие трансформаторы тока:

Трансформатор тока

Трансформатор тока — фото

Существуют также, так называемые, автотрансформаторы. В этих трансформаторах обмотки имеют не только магнитную связь, но и электрическую. Так обозначается на схемах лабораторный автотрансформатор (ЛАТР):

Лабораторный автотрансформатор Изображение на схеме

Лабораторный автотрансформатор — изображение на схеме

Используется ЛАТР таким образом, что включая в работу часть обмотки, с помощью регулятора, можно получить различные напряжения на выходе. Фотографию лабораторного автотрансформатора можно видеть ниже:

Фото ЛАТР

Фото ЛАТР

В электротехнике существуют схемы безопасного включения ЛАТРа с гальванической развязкой с помощью трансформатора:

Безопасный ЛАТР изображение на схеме

Безопасный ЛАТР изображение на схеме

Для согласования сопротивления разных частей схемы служит согласующий трансформатор. Также находят применение измерительные трансформаторы для измерения очень больших или очень маленьких величин напряжения и тока.

Тороидальные трансформаторы

Промышленность изготавливает и так называемые тороидальные трансформаторы. Один из таких изображен на фото:

Фото тороидальный трансформатор

Фотография — тороидальный трансформатор

Преимущества таких трансформаторов по сравнению с трансформаторами обычного исполнения заключаются в более высоком КПД, меньше звуковой дребезг железа при работе, низкие значения полей рассеяния и меньший размер и вес.

Сердечники трансформаторов, в зависимости от конструкции могут быть различными, они набираются из пластин магнитомягкого материала, на рисунке ниже приведены примеры сердечников:

Сердечники трансформаторов рисунок

Сердечники трансформаторов — рисунок

Вот в кратце и вся основная информация о трансформаторах в радиоэлектронике, более подробно разные частные случаи можно рассмотреть на форуме. Автор AKV.
Форум по трансформаторам

Закон Фарадея

закон Фарадея

По закону электромагнитной индукции во вторичной обмотке создается ЭДС напряжение. Вычисляется по формуле – U2 = −N2*dΦ/dt.

Справка! Фарадея – основной закон электродинамики. Гласит о том, что генерируемая электродвижущая сила равняется скорости изменения магнитного потока, но взятой со знаком минус. Именно Майкл Фарадей сделал открытие, когда в ходе экспериментов объявил, что электродвижущая сила начинает появляться в проводнике только при изменении магнитного поля. Величина этой силы прямо пропорциональна скорости изменения магнитного поля.

Все факты содержатся в одном уравнении. Однако, знак минус в законе – правило Ленца, указывающее на возникновение индукционного электрического тока при изменении магнитного поля в проводнике. Действие тока направлено на магнитное поле, начинающего противодействовать изменению магнитного потока.

Правило Ленца не подчиняется законам электродинамики, ведь индукционный ток появляется как в обмотках, так и в сплошных металлических блоках.

Для чего нужен трансформатор напряжения?

Трансформатор напряжения – универсальное устройство. Передает и распределяет энергию.

Используются в:

  • электроустановках;
  • блоках питания;
  • агрегатах передачи электроэнергии;
  • устройствах обработки сигналов;
  • источниках питания приборов.

Силовой трансформатор с большим напряжением применяется для:

  • подачи энергии в электросети на электростанциях;
  • повышения напряжения генератора, линии электропередач;
  • снижения напряжения, доходящего до потребительского уровня.

принцип действия силового трансформатора

Трехфазный прибор со специальной системой охлаждения используется в электросетях. Сердечник в составе – общий для всех 3-ех фаз.

Область применения сетевого трансформатора – источники электропитания, узлы электроприборов с разным напряжением. Импульсные агрегаты незаменимы для радиотехнических, электронных устройств. Сначала выпрямляют переменное напряжение в блоках питания. Далее за счет инвертора преобразуют высокочастотные импульсы, стабилизирующие постоянное напряжение.

Трансформаторы входят в состав многих схем питания для обеспечения минимального уровня высокочастотных помех. Например, разделительные установки предотвращают угрозу поражения электрическим током для человека. Ведь включение бытовых приборов в сеть через трансформатор становится безопасным.

Вторая цепь у прибора будет изолирована от контактов с землей, если конечно, речь идет о заземлении электрического оборудования. Измерительные силовые приборы применяются в схемах генераторов переменного тока. Количество фаз у генератора из трансформатора должно совпадать для достижения стабильного напряжения на выходе.

Согласующие трансформаторы незаменимы для электронных устройств с высоким входным сопротивлением и высокочастотных линий, но с разным сопротивлением нагрузки.

Чем отличается трансформатор тока от трансформатора напряжения?

Источником питания для трансформатора тока является непосредственно ток. Если он не будет проходить через обмотки, тот агрегат быстро выйдет из строя. Питание для трансформатора напряжения – источники напряжения и он также не будет функционировать при повышенных нагрузках тока.

Отличие между устройствами в разных электрических величинах и схемах включения.

Как работает трансформатор напряжения?

Приборы преобразуют энергию источника в необходимый коэффициент напряжения. Работают исключительно при переменном напряжении с постоянной частотой. В основе работы – электромагнитная индукция как явление, срабатываемое при изменении во времени магнитного потока, порождении ЭДС в обмотках.

Работа трансформатора начинается в первичной обмотке, где сердечник создает магнитный поток. Далее задействуется переменный ток, намагничивает сердечник, повышает индуктивность первичной обмотки, препятствует нарастанию тока на выводах обмотки напряжения. Если первичная обмотка отдает магнитный поток, то вторичная принимает его, изменяет с определенной скоростью, пронизывая все ветки и создавая ЭДС.

принцип действия трансформатора

Напряжение на ветках в полной мере зависит от быстроты изменения магнитного потока в сердечнике. Хотя получается одинаковым на ветках первичной и вторичной обмотки благодаря прохождению через них одного и того же магнитного потока.

Он в свою очередь создает вокруг себя электрическое поле в сердечнике, некий вихрь с воздействием на электроны, начиная толкать их в определенную сторону.

Справка! Если сказать проще, то принцип работы трансформатора напряжения основан на возбуждении напряжения во второй обмотке за счет возникшего переменного тока в магнитопроводе.

Источники
  • https://www.asutpp.ru/transformator-prostymi-slovami.html
  • https://ProTransformatory.ru/vidy/naznachenie-i-ustrojstvo
  • https://radioskot.ru/publ/nachinajushhim/transformatory/5-1-0-761
  • https://odinelectric.ru/equipment/chto-takoe-transformator
  • https://ProFazu.ru/elektrosnabzhenie/elektroset/transformator-toka-printsip-raboty.html
  • https://OFaze.ru/elektrooborudovanie/transformator
  • https://onlineelektrik.ru/eoborudovanie/transformatori/chto-takoe-transformator-eto-ustrojstvo-sposobnoe-izmenyat-napryazhenie-peremennogo-toka.html
  • https://remont220.ru/osnovy-elektrotehniki/1109-transformator/

Оцените статью
О трансформаторе