Currently set to Index
Currently set to Follow

Принцип действия однофазного трансформатора: основные характеристики и режимы работы

Содержание
  1. Что такое однофазный трансформатор
  2. Устройство и принцип действия однофазного трансформатора
  3. Стержневой трансформатор
  4. Трансформатор Автотрансформатор
  5. Автотрансформатор
  6. Конструкция однофазного трансформатора
  7. Из чего состоит трансформатор
  8. Назначение и устройство
  9. Принцип работы
  10. Виды трансформаторов
  11. Силовые трансформаторы
  12. Сетевые трансформаторы
  13. Автотрансформаторы
  14. Режимы работы
  15. В чем его достоинства и недостатки
  16. Устройство и принцип работы однофазного двухобмоточного трансформатора
  17. Классификация однофазных трансформаторов
  18. Силовой трансформатор
  19. Трансформатор тока
  20. Трансформатор напряжения
  21. Импульсный трансформатор
  22. Как расшифровать данные
  23. Тип
  24. Количество фаз
  25. Расщепленная обмотка
  26. Отвод тепла
  27. Число обмоток
  28. Регулировка напряжения под нагрузкой
  29. Исполнение
  30. Назначение
  31. Особые обозначения
  32. Цифры
  33. Что такое однофазный трансформатор
  34. Как работает однофазный трансформатор
  35. В чем его достоинства и недостатки
  36. Конструкция однофазного трансформатора
  37. Назначение однофазного трансформатора
  38. В чем его достоинства и недостатки
  39. Основные параметры
  40. Эксплуатация изделий

Что такое однофазный трансформатор

Электрическая энергия, выработанная генераторами электростанций, передается потребителям, находящимся в большинстве случаев на большом расстоянии от станций. Для удешевления стоимости электропередачи и уменьшения потерь энергии в ней приходится повышать напряжение электропередачи до cотен киловольт. При распределении энергии между потребителями необходимо понизить напряжение до десятков и сотен вольт. Все это вызывает необходимость многократного изменения (трансформирования) напряжения, которое осуществляется трансформаторам

Трансформатором называется статический аппарат, имеющий две (иногда более) обмотки, связанные переменным магнитным полем, служащий для трансформации переменного тока одного напряжения в переменный ток другого напряжения, при неизменной частоте.

Однофазный трансформатор
Число трансформаций от станции до потребителя обычно велико, и поэтому на 1 квт мощности генераторов, установленных на станции, приходится 4— 5 ква установленной мощности трансформаторов. Суммарные потери электроэнергии в трансформаторах составляют значительную долю потерь всей энергосистемы. Поэтому необходимо, чтобы трансформатор имел очень высокий к.п.д. В современных мощных трансформаторах к.п.д доходит до 0,995 при номинальной мощности.

Изобретателем трансформатора был выдающийся конструктор и ученый П. Н. Яблочков (1847 -1894).

Рис. 2. Однофазный трансформатор.

1 — магнитопровод; 2 — обмотка высшего напряжения; 3 — обмотка низшего напряжения; 4—путь полезного потока; 5 — путь потоков рассеяния первичной обмотки; 6 — путь потоков рассеяния вторичной обмотки.

Устройство и принцип действия однофазного трансформатора

Работа трансформатора основана на использовании явления взаимоиндукции. Трансформатор (рис. 9-1) имеет обычно две магнитно-связанные обмотки 2—2 и 3—3 с разными числами витков, помещенные для усиления магнитной связи на стальном, замкнутом магнитопроводе — сердечнике 1. Сердечник для уменьшения потерь энергии от вихревых токов набирается из стальных листов толщиной 0,5—0,35 мм, а при повышенной частоте тока — из более тонких листов (0,2—0,1 мм). Листы, перед сборкой, покрываются с двух сторон лаком для изоляции друг от друга. Трансформаторная сталь содержит 4—5% кремния, при этом сильно уменьшаются потери от гистерезиса и вихревых токов.

Расположение листов стали однофазного трансформатора при сборке

Те части сердечника, на которых располагаются обмотки, называются стержнями, а части, замыкающие их, называются ярмом. Внутреннее пространство между стержнем и ярмом служит для размещения обмоток и называется окном.

Сборка сердечника производится «внахлестку». На рис. 3 показаны два слоя листов, которые накладываются друг на друга при сборке сердечника трансформатора. При такой сборке достигается минимальный воздушный зазор в стыках.

Листы предварительное стягиваются изолированными болтами в пакеты сначала так, чтобы на стержни можно было надеть изготовленные обмотки (рис.9-3), а затем окончательно, чтобы после установки обмоток, замкнуть магнитопровод. Сечение стержней, получаемое при этом, показано на рис. 9-4 — квадратное при малой мощности, или крестовидное, приближающееся к кругу, при средней и большой мощности трансформаторов.

Сборка сердечника трансформатора

Обмотки трансформатора представляют собой катушки разных конструкций. Различают обмотку низшего напряжения (НН), рассчитанную на низшее напряжение трансформатора, которая помещается ближе к стержню, и обмотку высшего напряжения (ВН), рассчитанную на высшее напряжение и помещаемую поверх обмотки (НН), концентрически с ней.

На рис. 2 обмотки ВН и НН показаны сдвинутыми друг относительно друга для упрощений рисунка. В однофазных трансформаторах (рис. 2) каждая обмотка делится пополам и помещается на двух стержнях. Обе половины обмотки НН и обмотки ВН соединяются так, чтобы э. д. с. половин обмоток складывались.

Начала и концы обмоток трансформаторов обозначаются буквами латинского алфавита. Начала обмоток обозначают Л, В, С и a, b, с, а концы — X, Y, Z и х, y, z. Заглавные буквы приняты для обмотки высшего напряжения, а строчные — для обмотки низшего напряжения (рис. 2).

Сечение сердечников трансформаторов

Та обмотка, к которой энергия подводится, называется первичной, а та, от которой энергия отдается потребителю, называется вторичной. Энергия передается с первичной обмотки на вторичную при помощи магнитного потока, связывающего обмотки. Если напряжение вторичной обмотки меньше, чем первичной, то трансформатор называется понижающим; в обратном случае он будет повышающим.

Таким образом, трансформатор, показанный на рис. 2 — понижающий. Однако если к обмотке ах подать энергию при номинальном для этой обмотки напряжении, а к обмотке АХ подключить потребителя, то трансформатор будет повышающим.

Стержневой трансформатор

Броневой трансформатор

Трансформатор с сердечником рассмотренного выше типа называется стержневым. Однако существуют трансформаторы броневого типа (рис. 5), у которых магнитопровод разветвлен и охватывает обмотки как бы броней.

Обмотки ВН и НН таких трансформаторов изготовляются в виде плоских катушек, размещающихся на одном и том же стержне. Трансформаторы броневого типа применяются, например, в радиотехнических устройствах.

Номинальной мощностью трансформатора называется мощность его вторичной обмотки, обозначенная на щитке трансформатора и выраженная в вольт-амперах или киловольт-амперах.

Трансформатор Автотрансформатор

Трансформатор состоит из замкнутого железного сердечника С, собранного из листового железа (для уменьшения потерь на вихревые токи), на котором имеются две обмотки: первичная K1, которая включается в питающую сеть, и вторичная К2, к которой подключается нагрузка.

Пренебрегая падением напряжения на активном сопротивлении обмоток, можно приравнять э. д. с. самоиндукции напряжению, приложенному к первичной обмотке, а э. д. с. индукции во вторичной обмотке — напряжению на ее зажимах, тогда

E2/E1 = U2/U1 = n2/n1, т. е. напряжения в обмотках трансформатора прямо пропорциональны числу их витков. Отношение числа витков n1 первичной к числу витков п2 вторичной обмоток называется коэффициентом трансформации k:

k = n1/n2 = U1/U2.

Если пренебречь потерями в трансформаторе, то мощности тока в первичной и во вторичной обмотках можно считать равными и тогда токи в обмотках трансформатора обратно пропорциональны числу витков:

I1/I2 = n2/n1 = U2/U1

Трансформаторы являются неотъемлемой частью почти всех радиоприборов, электромедицинских аппаратов и т. д. При этом часто пользуются автотрансформатором — прибором, подобным трансформатору, но имеющим только одну обмотку, в которой совмещены функции первичной и вторичной обмоток трансформатора. Пусть обмотка автотрансформатора имеет n витков. Питающее напряжение U1 подводится к n1 виткам обмотки.

Нагрузка присоединяется к выводам от n2 витков. Витки n1 являются первичными. Ток в первичных витках образует в сердечнике магнитный поток, связанный со всеми n витками обмотки. При этом во всех п витках наводится электродвижущая сила, которая в n1 витках является э. д. с. самоиндукции, а в остальных витках — э. д. с. индукции. Электродвижущая сила в любом витке имеет одинаковую величину Ei и одно и то же направление. Поэтому, подключив нагрузку к n2 виткам, которые являются вторичными витками (безразлично, будет ли n2>n1 или n2>n1), получим на нагрузке напряжение:

U2=Ein2.

В то же время приложенное напряжение U1 уравновешивается обратной электродвижущей силой самоиндукции, возбуждаемой в n1 витках, т. е. U1=Ein1. Поэтому можно составить соотношение, аналогичное трансформатору:

U2/U1 = EiN2/Ein1 = n2/n1

Автотрансформатор

Автотрансформатор часто применяют для регулировки напряжения или для обеспечения нормального напряжения на нагрузке (радиоприемники, телевизоры, медицинские электронные аппараты и т. д.) при колебаниях напряжения в сети. В этом случае обмотка автотрансформатора имеет несколько отводов, которые присоединяют к контактам переключателя.

Напряжение сети подводится к началу обмотки и среднему контакту переключателя П. Нагрузка включается между крайним выводом и подвижным контактом переключателя. Если переключатель поставить на средний контакт, то питающее напряжение будет подаваться на нагрузку без изменения. Если напряжение сети ниже нормального, то перекл но передвинуть в сторону большего числа витков.

При напряжении сети выше нормального — наоборот. Для удобства регулировки на выход автотрансформатора подключается вольтметр. При лабораторных работах часто применяется автотрансформатор с плавной регулировкой вторичного напряжения в широких пределах.

Конструкция однофазного трансформатора

Любой однофазный трансформатор может работать только в цепях переменного тока. За счёт него полученное электрическое напряжение изменяется в нужную величину. Ток, полученный таким способом, повышается, в результате того, что мощность отдаётся в действительности без потерь. С этого и следует вывод, что основное использование такого прибора – вывести необходимое для решения задачи напряжение, после чего можно применять в определённых целях.

Вникнуть в работу прибора поможет детальный разбор конструкции трансформатора. Состоит он из следующих основных частей:

  • Сердечник, состоящий из материалов с ферромагнитными свойствами;
  • Две катушки, вторая находится на отдельном каркасе;
  • Защитный чехол (имеется не у всех моделей).

Конструкция однофазного трансформатора
Конструкция однофазного трансформатора





Из чего состоит трансформатор

Основой каждого трансформатора является замкнутый сердечник, выполняющий функцию магнитопровода. Для его изготовления применяется электротехническая сталь в виде листов, толщиной 0,35 – 0,5 мм. На магнитопровод наматываются изолированные медные провода.

Трансформатор в электрических цепях

Участки сердечника с обмотками носят название стержней, а те, которые без обмоток, называются ярмами. Обмотка, на которую поступает электроэнергия, именуется первичной. Другая обмотка, из которой выходит преобразованный ток, называется вторичной. Они обе разделены между собой путем электрической изоляции, кроме автоматических трансформаторов.

Назначение и устройство

Устройство и принцип работы однофазного трансформатораЛюбой трансформатор 220 Вольт однофазный представляет собой электрическое устройство, работающее только в цепях переменного тока. С его помощью входное напряжение преобразуется в нужную величину (чаще всего оно уменьшается). При этом ток, отбираемый от вторичной обмотки, возрастает, поскольку мощность предается практически без потерь. Отсюда следует, что основное назначение этого прибора – получить нужное для решения задач напряжение, а затем использовать его в конкретных целях.

Составить более полное представление поможет знакомство с конструкцией трансформатора, который состоит из следующих основных элементов:

  • сердечник из ферромагнитных материалов;
  • первичная и вторичная катушка, размещенная на изолированном каркасе;
  • защитный кожух (этот элемент у ряда моделей отсутствует).

В некоторых образцах вместо ферромагнетиков применяются электротехническая сталь или пермаллой. Выбор определенного типа материала сердечника зависит от области использования самого изделия.

Принцип работы

Однофазный трансформатор работает на определённом законе, ввиду которого идущее в витке переменное электромагнитное поле наводит электродвижущую силу в расположенном рядом проводнике. Действие названо законом электромагнитной индукции, которое было открыто Майклом Фарадеем в 1831 году. В результате обоснования закона учёный создал общую теорию, используемую в работе огромного числа современных электрических приборов.

При подключении первичной обмотки к источнику переменного тока в витках этой обмотки протекает переменный ток I1, который создает в сердечнике (магнитопроводе) переменный магнитный поток. Замыкаясь в сердечнике, этот поток сцепляется с первичной и вторичной обмотками и индуцирует в них ЭДС, пропорциональные числу витков W.

Принцип работы трансформатора
Принцип работы трансформатора

В первичной обмотке ЭДС самоиндукции: во вторичной обмотке ЭДС взаимоиндукции: При подключение ко вторичной обмотке нагрузке потечет I2 и установиться U2.

Виды трансформаторов

Современные трансформаторные устройства имеют множество разновидностей и применяются в самых различных областях.

Силовые трансформаторы

Передача электроэнергии на расстояние осуществляется с помощью силовых трансформаторов. Эти низкочастотные приборы выполняют ее прием и преобразование. Название силовых они получили из-за работы с напряжением, которое может достигать более 1000 киловольт.

В городах такие трансформаторы понижают напряжение до 0,4 кВ, превращая в 380 или 220 вольт, необходимых для нормального потребления. Эти устройства оборудуются двумя, тремя и более обмоток, что позволяет одновременно преобразовывать напряжение сразу с нескольких генераторов. Нормальный температурный баланс поддерживается с помощью трансформаторного масла, а в особо мощных приборах дополнительно установлена система активного охлаждения.

Сетевые трансформаторы

До недавнего времени практически во всех электрических приборах устанавливались сетевые однофазные трансформаторы. С помощью этих устройств, обычное напряжение сети в 220 вольт снижалось до необходимого уровня в 5, 12, 24 и 48 В.

В сетевых трансформаторах практиковалась установка сразу нескольких вторичных обмоток. Такая конструкция обеспечивала питание разных частей схемы сразу от нескольких источников питания. Например, трансформатор накаливания обязательно присутствовал в схемах с радиолампами.

В современных приборах этого типа используются Ш-образные, тороидальные или стержневые сердечники. Их основой являются пластины, выполненные из электротехнической, стали. При тороидальной форме магнитопровода трансформаторы получаются более компактными, обмотка проходит по всей поверхности, не оставляя пустых участков ярма.

Автотрансформаторы

Автотрансформаторы также относятся к низкочастотным устройствам, в которых первичная и вторичная обмотка дополняет друг друга. Между ними существует не только магнитная, но и электрическая связь. Единственная обмотка оборудована сразу несколькими выводами, что позволяет получать разные значения напряжения. Данные устройства отличаются более низкой стоимостью, поскольку провода для обмоток нужно меньше, как и стали для сердечника. В итоге общая масса прибора также снижается.

Режимы работы

Подобно любым преобразовательным устройствам трансформатор имеет два режима работы:

  • так называемый «холостой ход»;
  • режим нагрузки.

При холостом ходе устройство работает без нагрузки и потребляет минимум мощности, рассеиваемой только в первичной обмотке. Ток в ней также минимален и составляет обычно не более 3-10% от значения, наблюдаемого при подключенной нагрузке. Во втором случае в витках вторичной обмотки начинает течь ток, величина которого обратно пропорциональна количеству витков в катушке.

В понижающем трансформаторе напряжение в ней ниже, а ток – больше. В этом режиме мощность в нагрузку передается с учетом теплового рассеяния в сердечнике трансформатора.

В чем его достоинства и недостатки

Любое электротехническое приспособление обладает рядом преимуществ и недостатков. Однофазные электрические трансформаторы этому не исключение. Достоинств у них больше, чем минусов. Основными из них являются:

  • обладают одним из самых больших коэффициентов полезного действия (КПД), который составляет 98 %;
  • отлично охлаждаются и обладают повышенной стойкостью к перегрузкам и кратковременным скачкам напряжения;
  • экологическая безопасность сухого вида. Масла в них нет, а значит, что окружающей среде ничего не может навредить даже после утилизации;
  • отсутствие нужды соблюдения особых противопожарных мер в местах установки трансформаторов;
  • сравнительно небольшие размеры, позволяющие устанавливать аппараты в небольшие отсеки.

Не лишены эти приборы и ряда недостатков, которые зависят от их вида и места применения:

  • сложное обслуживание, если аппарат масляный. Его регулярно нужно проверять на пробой и подтекание резиновых прокладок, замена которых достаточно сложная;
  • сухие однофазные приборы не переносят повышенную влажность, ветер, химические и физические воздействия, а также загрязнение;
  • высокая стоимость сухих трансформаторов по сравнению с масляными.


Обычный прибор для однофазных сетей

Устройство и принцип работы однофазного двухобмоточного трансформатора

Назначение, области применения и классификация трансформаторов

Трансформаторы.

Трансформатором называется электромагнитное устройство, служащее для преобразования электрической энергии переменного тока одного напряжения в электрическую энергию переменного тока другого напряжения без изменения частоты.

Потребность трансформирования, т.е. повышения и понижения переменного напряжения вызвана необходимостью передачи электрической энергии на большие расстояния. Чем выше величина передаваемого напряжения, тем, при равной мощности генератора, меньше ток. Следовательно, для передачи энергии потребуются провода меньшего сечения, что приводит к экономии цветных металлов, к уменьшению веса и стоимости линий электропередач (ЛЭП). Кроме того, с уменьшением тока уменьшаются потери мощности в линиях передач ∆P=I2Rл.

По применению трансформаторы можно разделить на следующие типы:

1. Силовые трансформаторы, используемые в сетях передачи и распределения электроэнергии.

2. Автотрансформаторы, имеющие плавную регулировку выходного напряжения и используемые для его изменения (регулирования).

3. Измерительные трансформаторы, применяемые в качестве элементов измерительных устройств.

4. Трансформаторы специального назначения (печные, сварочные, пиковые, изолирующие и т.д.)

Применяемые в настоящее время изоляционные материалы позволяют увеличить напряжения в ЛЭП до 1250кВ.

Трансформатор состоит из ферромагнитного (стального) сердечника (ФМС) и двух обмоток: первичной с числом витков W1, к которой подводится напряжение источника U1, и вторичной – с числом витков W2,на зажимах которой возникает напряжение U2.Сердечник трансформатора собирается из отдельных листов электротехнической стали (толщиной 0,3-0,5 мм), изолированных друг от друга для уменьшения потерь на вихревые токи.

В основу работы трансформатора положен принцип взаимоиндукции. При включении первичной обмотки W1 на переменное напряжение U1 в ней появится ток I0.Этот ток, протекая по виткам W1, вызовет появление магнитного потока первичной обмотки, который состоит из основного или, по-другому, рабочего потока Ф, замыкающегося по сердечнику и потока рассеяния Фδ1, замыкающегося по воздуху (рис. 4.3.). Электрическая энергия передается из первичной обмотки во вторичную с помощью рабочего потока.

Переменный синусоидальный рабочий магнитный поток Ф на основании закона электромагнитной индукции наводит в первичной обмотке ЭДС самоиндукции E1, а во вторичной обмотке — ЭДС взаимоиндукции Е2, которая создает на зажимах вторичной обмотки напряжение U2.

Если ко вторичной обмотке трансформатора присоединить нагрузку Zн(рис. 4.4.), то в ней появится ток I2, который, протекая по виткам W2, вызовет появление магнитного потока во вторичной обмотке. Этот поток состоит из потока Ф2, замыкающегося по сердечнику и потока рассеяния Фδ2, замыкающегося по воздуху.

Вторичный поток Ф2 по правилу Ленца всегда направлен навстречу потоку первичной обмотки и стремится его уменьшить. Уменьшение потока Ф повлечет за собой уменьшение ЭДС Е1. В результате увеличится разность между напряжением U1 и ЭДС Е1, что приведет увеличению токапеовичной обмоткиI0 до тока I1, что компенсирует поток Ф2 (рис.4.4). Таким образом, суммарный рабочий магнитный поток Ф1 — Ф2останется неизменным и приблизительно равным первоначальному потоку Ф, сцепленному с обеими обмотками трансформатора.

Переменные магнитные потоки рассеяния первичной и вторичной обмоток Фδ1 и Фδ2 сцеплены с одной из обмоток и наводят в них соответствующие ЭДС рассеяния Еδ1 и Еδ2.

Классификация однофазных трансформаторов

Силовой трансформатор

Трансформатор используется в преобразовании электроэнергии в сетях и в устройствах, используемых для получения и применения нужной величины электрической энергии. «Силовой» подразумевает его работу с высоким напряжением. Использование силовых трансформаторов вынуждается разными показателями рабочей мощности ЛЭП, сетей в городской полосе, выводящее напряжение для конечных объектов, а также для общей работы электрических устройств и машин. Мощность разнится от нескольких единиц вольт до сотен киловатт.

Автотрансформатор – один из видов преобразователя, где первичная и вторичная обмотки не разделены, а соединены друг с другом напрямую. Ввиду этого между ними образуется как электромагнитная, так и электрическая связь. Обмотка сопровождается как минимум тремя выводами, подсоединяясь к каждой из них, можно использовать разные мощности. Главным достоинством такого трансформатора – это его высокий уровень КПД, так как преобразуется не всё напряжение, а лишь некоторая часть. Разница особенно заметна, когда входная и выходная мощность имеют незначительные отличия.

схема работы автотрансформатора

Трансформатор тока

Такой трансформатора используется в основном для уменьшения тока первичной обмотки до нужного значения, подходящего в применении цепей измерения, защиты, регулирования и сигнализации. Помимо этого используется в гальванической развязке (передача электроэнергии или сигнала связанными электрическими цепями, при этом электрический контакт между ними отсутствует).

Нормируемое значение параметров тока вторичной обмотки – 1 А или 5 А. Первичная обмотка трансформатора подсоединяется ступенчато в цепь с нагрузкой, при этом переменный ток подвергается контролю, ко вторичной обмотке подключаются измерительные устройства.

Вторичной обмотке трансформатора тока необходимо постоянно находиться в режиме около короткого замыкания. Ведь при любом варианте разъединения цепи на неё поступает высокая мощность, способная выбить изоляцию и выхода из строя включённых приборов.

Высоковольтный ТТ(слева) и низковольтный ТТ(справа)
Высоковольтный ТТ(слева) и низковольтный ТТ(справа)

Читать более подробно про трансформатор тока.

Трансформатор напряжения

Такой трансформатор получает энергию от источника напряжения. Используется в основном для изменения высокого напряжения в низкое в различных цепях, в том числе измерительных и релейной защиты и автоматики. Имеет возможность проводить изоляцию цепей защиты и измерения от цепей повышенной мощности.

трансформатор напряжения
Высоковольтный ТН(слева) и низковольтный ТН(справа)

Читать более подробно про ТН.

Импульсный трансформатор

Применяется для изменения импульсных сигналов с откликом импульса в точности до десятков микросекунд. При этом форма импульса сопровождается лишь незначительным искажением. Главным назначением импульсного трансформатора является передача прямоугольного электрического импульса. Используется для преобразования коротких видеоимпульсов напряжения, зачастую воспроизводящихся с высокой скважностью.

Важный параметр при использовании импульсного трансформатора – это неискажённый вид передачи импульсных систем напряжения. При влиянии на вход устройства мощности, отличающейся друг от друга, важно получить напряжение, в точности совпадающее с той же самой формой, разве что, с другой амплитудой или различающейся полярностью.

Виды трансформаторов
Виды импульсных трансформаторов

Как расшифровать данные

Трансформаторы имеют обозначение в виде набора букв и цифр вида ХХХХХХ – 1234 / 1234 – Х1, где вместо литеры «Х» ставится определенная буква, которая по порядку показывает тип, количество фаз, сколько обмоток низшего напряжения, систему охлаждения и специальные обозначения для особых видов трансформаторов.

Не всегда в обозначении трансформатора буду присутствовать все буквы, их присутствие в маркировке зависит только от наличия этих характеристик.

Цифровые обозначения несут в себе основные характеристики трансформаторов: номинальная мощность, класс номинального напряжения обмотки ВН, а последние две цифры – год начала производства.

Маркировка трансформатора

Тип

Если в начале условного обозначения будет стоять буква «А», то перед вами автотрансформатор. Если она отсутствует, то силовой трансформатор – повышающий или понижающий.

Количество фаз

Для обозначения числа фаз используются буквы «Т» – трехфазный и «О» – однофазный.

Однофазный трансформатор

Читайте также:  Как проверить батарейку мультиметром и узнать напряжение?

Расщепленная обмотка

После этой буквы идет информация о расщепленной обмотке – «Р». Это означает, что на понижающем напряжении находятся две или три обмотки.

Отвод тепла

Система охлаждения обозначается следующими буквами:

  • С – сухой трансформатор, то есть охлаждение воздушное;
  • СЗ – то же самое, но в защищенном исполнении;
  • СГ – герметичный с воздушным охлаждением;
  • СД – воздушное охлаждение с помощью вентилятора;
  • М – охлаждение масляное с естественной циркуляцией;
  • Д – бак с маслом охлаждается с помощью вентилятора (дутье);
  • Ц – принудительная циркуляция масла;
  • ДЦ – комбинация двух способов охлаждения: обдув и циркуляция.

Сухой трансформатор

Число обмоток

После системы охлаждения может стоять буква «Т», которая обозначает трехобмоточный трансформатор. Интересно, что двухобмоточный условного обозначения не имеет.

Регулировка напряжения под нагрузкой

В случае, когда количество витков на трансформаторе можно изменять без разъединения электрической цепи, то в этом случае это означает, что регулирование напряжения может происходить под нагрузкой и маркируется буквой «Н». При регулировке с выключением – переключение без возбуждения – буква отсутствует.

Регулировка напряжения под нагрузкой

Исполнение

Существуют устройства с особыми конструкционными решениями. Подвесные трансформаторы обозначаются буквой «П», с литой изоляцией – «Л», энергосберегающие прописываются буквой «Э», а усовершенствованные – буквой «У».

Назначение

В зависимости от сферы применения, в конце маркировки может стоять литера, дающая об этом информацию. Для работы на самой электростанции – «С», при использовании на железных дорогах – «Ж», на металлургических предприятиях – «М».

Регулировка напряжения под нагрузкой

Особые обозначения

Существуют отдельные категории трансформаторов, для которых применяются другие обозначения. В частности, это трансформаторы тока и напряжения. Тип сразу указывается в начале буквенного кода: «Т» для первого вида и «Н» для второго. Далее следует информация о способе установки: «П» для проходных, «О» для опорных и «Ш» для шинных. Изоляция также обозначается специальными буквами: «Л» – для литой изоляции, «Ф» – для фарфоровой и «В» – для встроенного изолятора.

Цифры

Цифровая маркировка дает только самые основные характеристики трансформатора. Следующие через тире цифры сразу же после букв – это номинальная мощность в киловольт-амперах (кВА). Затем через наклонную черту указывается мощность обмотки, а для автотрансформаторов еще через один слэш – класс напряжения обмотки. После этого указывается климатическое исполнение, то есть условия местности, в которых может эксплуатироваться данный экземпляр («У» – для умеренных зон, «Х» – для холодных и так далее) и тип его размещения – на открытом воздухе или внутри помещения. В некоторых случаях через тире указывается год выпуска или начала производства устройств данной конструкции.

Цифровая маркировка трансформатора

Что такое однофазный трансформатор

Электрическая установка, которая содержит две и более катушки, связанные индуктивно, называется трансформатором. Этот прибор способен преобразовывать электроток одной напряженности в переменный ток другой напряженности. На данный момент особой популярностью пользуются трехфазные и однофазные электротрансформаторы.


Схема простейшего однофазного трансформатора

Обычный однофазный прибор представляет собой замкнутый сердечник из ферромагнитного вещества, который обматывают первичной и вторичной катушками. Для снижения токов вихревого типа сердечник делают из тонких (пол-миллиметра) слоев специальной стали.

Обратите внимание! На схемах трансформаторов обычно применяют плюсовые направления всех значений, которые характеризуют процессы работы. Исходит это из того, что первичная катушка — это приемник энергии, а вторичная — источник.


Однофазный трансформатор NDK-50VA 230/24 IEC

Как работает однофазный трансформатор

Работа этого прибора заключается в следовании законам электромагнетизма. Во время подключения первой обмотки к питанию по ней начинает идти переменный ток, создающий в ферромагнитном сердечнике магнитные токи переменного знака. Когда этот поток замыкается в сердечнике, то он сцепляет первичную и вторичную катушки и производит в них электродвижущую силу, которая пропорциональна количеству витков катушки.

Важно! Когда по первичной катушке проходит ток, он создает с ее помощью магнитное поле, пронизывающее не только эту обмотку, но и вторичную.


Принцип работы и рассеивание магнитных волн

В чем его достоинства и недостатки

Любое электротехническое приспособление обладает рядом преимуществ и недостатков. Однофазные электрические трансформаторы этому не исключение. Достоинств у них больше, чем минусов. Основными из них являются:

  • обладают одним из самых больших коэффициентов полезного действия (КПД), который составляет 98 %;
  • отлично охлаждаются и обладают повышенной стойкостью к перегрузкам и кратковременным скачкам напряжения;
  • экологическая безопасность сухого вида. Масла в них нет, а значит, что окружающей среде ничего не может навредить даже после утилизации;
  • отсутствие нужды соблюдения особых противопожарных мер в местах установки трансформаторов;
  • сравнительно небольшие размеры, позволяющие устанавливать аппараты в небольшие отсеки.

Не лишены эти приборы и ряда недостатков, которые зависят от их вида и места применения:

  • сложное обслуживание, если аппарат масляный. Его регулярно нужно проверять на пробой и подтекание резиновых прокладок, замена которых достаточно сложная;
  • сухие однофазные приборы не переносят повышенную влажность, ветер, химические и физические воздействия, а также загрязнение;
  • высокая стоимость сухих трансформаторов по сравнению с масляными.


Обычный прибор для однофазных сетей

Конструкция однофазного трансформатора

Конструкция простейшего однофазного электрического трансформатора такова: замкнутый ферромагнитный стальной сердечник, находящийся внутри двух катушек (их может быть и больше). Та обмотка, которая соединена с источником электрической энергии, называется первичной. Катушка, соединенная с потребителем энергии, называется вторичной.

Обратите внимание! Все параметры и величины в таком приборе делятся на первичные и вторичные. Это зависит от того, где они наблюдаются (в той или иной обмотке) и на что влияют.

В процессе протекания по прибору электрического тока в первичной катушке возникают напряжение и сила намагничивания, возбуждающая поток магнитных волн в стальном сердечнике. Этот поток в первой катушке появляется благодаря силе самоиндукции, а во второй — взаимоиндукции.


Конструкция аппарата

Назначение однофазного трансформатора

Трансформаторные установки нашли широкое применение в различных электросетях. Они являются незаменимыми частями всей электрической системы. Все дело в том, что передача электроэнергии по сетям осуществляется при высоком напряжении (от 500 до 1000 кВ), а для перемещения той же мощности потребуется куда менее сильный ток, что ведет к снижению потерь. На станции с помощью трансформаторов повышают напряжение со стороны отправителя и уменьшают его со стороны получателя.

К сведению! Выше описаны силовые приборы, но есть и измерительные, сварочные трансформаторы. В некоторых приборах они используются для разделения цепи гальваническим методом. Электротрансформаторы относят к машинам, хотя они не имеют движущихся частей.


Коробка для подключения

Однофазный трансформатор имеет широкое распространение в электротехнике и электрических сетях. Благодаря своему простому строению и высокому КПД его зона применения расширилась от силовых установок до бытовых приборов.

В чем его достоинства и недостатки

Любое электротехническое приспособление обладает рядом преимуществ и недостатков. Однофазные электрические трансформаторы этому не исключение. Достоинств у них больше, чем минусов. Основными из них являются:

  • обладают одним из самых больших коэффициентов полезного действия (КПД), который составляет 98 %;
  • отлично охлаждаются и обладают повышенной стойкостью к перегрузкам и кратковременным скачкам напряжения;
  • экологическая безопасность сухого вида. Масла в них нет, а значит, что окружающей среде ничего не может навредить даже после утилизации;
  • отсутствие нужды соблюдения особых противопожарных мер в местах установки трансформаторов;
  • сравнительно небольшие размеры, позволяющие устанавливать аппараты в небольшие отсеки.

Не лишены эти приборы и ряда недостатков, которые зависят от их вида и места применения:

  • сложное обслуживание, если аппарат масляный. Его регулярно нужно проверять на пробой и подтекание резиновых прокладок, замена которых достаточно сложная;
  • сухие однофазные приборы не переносят повышенную влажность, ветер, химические и физические воздействия, а также загрязнение;
  • высокая стоимость сухих трансформаторов по сравнению с масляными.


Обычный прибор для однофазных сетей

Основные параметры

Кроме того, следует отметить, что любой Т обладает некоторыми параметрами, которые и отличаются от других трансформаторов. К тому же, если понимать эти зависимости, то можно рассчитать и изготовить Т своими руками.

Связь между ЭДС, возникающей в обмотках Т, зависит от количества витков каждой из них. Исходя из того, что I и II обмотки пронизываются одним и тем же Ф, возможно вычислить следующее соотношение на основании общего закона индукции для мгновенных значений ЭДС:

  1. Однофазный трансформатор купить
    Для первичной с количеством витков w1: e1 = — w1 * dФ/dt * E-8.
  2. Для вторичной с количеством витков w2: e2 = — w2 * dФ/dt * E-8.

Соотношение dФ/dt показывает величину изменения Ф за единицу времени. Значение потока Ф зависит от закона изменения переменного тока за единицу времени. Исходя из этих выражений получается следующая формула соотношения числа витков к ЭДС каждой обмотки:

e1/e2 = w1/w2.

Следовательно, можно сделать следующий вывод: индуцируемые в обмотках значения ЭДС также относятся к друг другу, как и число витков обмоток. Для более простой записи можно сопоставить значения e и U: e = U. Из этого следует, что e1 = U1 e2 = U2 и возможно получить еще одну величину, называемую коэффициентом трансформации (к): e1/e2 = U1/U2 = w1 / w2 = k. По коэффициенту трансформации Т делятся на понижающие и повышающие.

 однофазный трансформатор применение

Понижающим является Т, k которого меньше 1, и, соответственно, если к > 1, то он является повышающим. При отсутствии потерь в проводах обмоток и рассеивания Ф (они незначительны и ими можно пренебречь) вычислить основной параметр Т (k) достаточно просто. Для этого необходимо воспользоваться следующим простым алгоритмом нахождения k: найти соотношения U обмоток (если обмоток более 2, то соотношение нужно искать для всех обмоток).

Однако расчет k является только первым шагом для дальнейшего расчета или выявления неисправности на наличие короткозамкнутых витков.

Чтобы определить значения U, необходимо использовать 2 вольтметра, точность которых составляет около 0,2−0,5. Кроме того, для определения k существуют такие способы:

  1. По паспорту.
  2. Практически.
  3. Использование определенного моста (мост Шеринга).
  4. Прибором, предназначенным для этой цели (УИКТ).

Таким образом, принцип работы однофазного трансформатора основан на простом законе физики, а именно: если проводник с n количеством витков поместить в магнитное поле, причем это поле должно постоянно меняться с течением времени, то в витках будет генерироваться ЭДС. В этом случае справедливо и обратное утверждение: если в постоянное магнитное поле поместить проводник и осуществлять им движения, то в его обмотках начинает появляться ЭДС.

Эксплуатация изделий

При эксплуатации однофазных преобразующих устройств особое внимание обращается на безопасное обращение с ними, что объясняется высоким напряжением, присутствующим на первичных обмотках. Также важно учитывать следующие моменты, касающиеся правил установки и включения трансформаторов в электрические схемы:

  • чтобы избежать выхода обмоток из строя (выгорания), следует защищать вторичные цепи от КЗ;
  • важно следить за тепловым режимом сердечника и обмоток и, если потребуется, предусмотреть их охлаждение.

Уход за однофазным трансформатором сводится к стандартным процедурам, которые предусмотрены положениями действующих нормативов.

Источники
  • https://znaesh-kak.com/e/e/%D0%BE%D0%B4%D0%BD%D0%BE%D1%84%D0%B0%D0%B7%D0%BD%D1%8B%D0%B9-%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%84%D0%BE%D1%80%D0%BC%D0%B0%D1%82%D0%BE%D1%80
  • https://TeploDom24.ru/teoriya-i-praktika/tipy-transformatorov.html
  • https://forte-drilling.ru/opyt-i-teoriya/klassifikaciya-transformatorov.html
  • https://stroim21.ru/ustroystvo-i-princip-raboty-odnofaznogo-transformatora.html
  • https://StrojDvor.ru/elektrosnabzhenie/ustrojstvo-i-princip-raboty-odnofaznogo-transformatora/
  • https://drova-pil.ru/novosti/ustrojstvo-i-princip-dejstviya-odnofaznogo-transformatora.html
  • https://rusenergetics.ru/oborudovanie/odnofazniy-transformator
  • https://GorGaznn.ru/novosti/konstrukciya-odnofaznogo-transformatora.html
  • https://220v.guru/elementy-elektriki/transformatory/naznachenie-i-princip-deystviya-odnofaznogo-transformatora.html

Оцените статью
О трансформаторе