Currently set to Index
Currently set to Follow

Холостой ход трансформатора: опыты и методы снижения тока ХХ

Содержание
  1. Определение токов трансформатора
  2. Общее устройство и виды
  3. Основные типы
  4. Особенности установок
  5. Порядок и схема измерения
  6. Методология проведения опыта
  7. Подход к проведению измерений
  8. Суть измерения
  9. Как проводится опыт холостого хода
  10. Коэффициент трансформации
  11. Однофазные трансформаторы
  12. Трехфазные
  13. Коэффициент трансформации
  14. Однофазные приборы
  15. Трехфазные приборы
  16. Применение коэффициента
  17. Как проводится опыт холостого хода
  18. Для однофазного трансформатора
  19. Для трёхфазного трансформатора
  20. Для сварочного трансформатора
  21. Видео: измерение тока холостого хода
  22. Инструменты
  23. Рабочие характеристики сварочного трансформатора
  24. Напряжение сети и количество фаз
  25. Номинальный сварочный ток трансформатора
  26. Диаметр электрода
  27. Пределы регулирования сварочного тока
  28. Номинальное рабочее напряжение
  29. Номинальный режим работы
  30. Мощность потребления и выходная
  31. Напряжение холостого хода
  32. Схема сварочного трансформатора
  33. Расчет сварочного трансформатора
  34. Методика и теоретические основы проведения опыта
  35. Коэффициент трансформации
  36. Измерение тока холостого хода
  37. Измерение мощности потерь в стали
  38. Определение поперечного сечения стержня и ярма сердечника трансформатора
  39. Специальные типы трансформаторов
  40. Выбор размеров окна сердечника и укладка обмоток на стержнях трансформатора
  41. Проверка трансформатора на нагревание
  42. Анализ результатов измерения
  43. Режим холостого хода трансформатора
  44. Почему важно использовать ваттметр
  45. Таблица потерь
  46. Проверка работы
  47. Порядок и схема измерения
  48. Холостой ход трехфазного трансформатора
  49. Описание процесса
  50. Сварочный трансформатор: устройство и принцип действия
  51. Устройство сварочного трансформатора
  52. Принцип работы сварочного трансформатора
  53. Режим холостого хода трансформатора
  54. Таблица потерь
  55. Проверка работы
  56. Холостой ход трехфазного трансформатора

Определение токов трансформатора

При определении тока первичной обмотки следует учитывать потери, а также намагничивающий ток трансформатора, относительная величина которых в маломощных силовых трансформаторах весьма значительна.

Величины токов могут быть определены по следующим формулам:

а) однофазный трансформатор:

б) трехфазный трансформатор:

где U1 и U2 – напряжения обмоток по заданию; P2 – мощность вторичной обмотки по заданию; cos φ2 – коэффициент мощности нагрузки по заданию; η – коэффициент полезного действия (КПД) трансформатора, предварительно выбираемый по кривой рисунка 1.

Рисунок 1. Кривые зависимости КПД и падения напряжения маломощных трансформаторов от мощности

Так как в большинстве случаев нагрузка маломощных трансформаторов обычно активная (cos φ2 = 1), то коэффициент мощности первичной цепи практически можно определить по формуле:

Как показывает расчет и опыт, для маломощных трансформаторов с активной нагрузкой величина отношения намагничивающего тока Iμ к активной составляющей первичного тока I1а в среднем составляет около

= 0,4 – 0,6, поэтому коэффициент мощности первичной цепи этих трансформаторов обычно находится в пределах cos φ1 = 0,86 – 0,92.

Общее устройство и виды

Чтобы понять, что такое опыт холостого хода различных трансформаторов, необходимо рассмотреть, что собой представляет подобное оборудование.

Основные типы

Трансформаторами называются машины неподвижного типа, которые работают благодаря электрическому току. Они меняют входное напряжение. Существует несколько видов подобных аппаратов:

  1. Силовые.
  2. Измерительные.
  3. Разделительные.
  4. Согласующие.

Чаще всего в энергетическую цепь требуется подключение силового трансформатора. Они могут иметь две или более обмоток. Аппарат может быть однофазный (бытовая сеть) или многофазный (промышленная сеть).

Особенности установок

Отдельно выделяются автотрансформаторы. В них есть только одна совмещенная обмотка. Также бывает сварочный аппарат. Они имеют определенную сферу применения.

В однофазном и многофазном оборудовании может устанавливаться различная номинальная мощность. Она может определяться в диапазоне от 10 до 1000 кВА и более. Маломощные однофазные и многофазные приборы могут быть в диапазоне до 10 кВА. Средние разновидности будут иметь мощность 20 кВА, 250 кВА, 400 кВА, 630 кВА и т. д. Если же этот показатель больше 1000 кВА, это установка высокой мощности.


Порядок и схема измерения

Перед проведением опыта проводят процесс размагничивания магнитопровода испытуемого трансформатора. Для этого используется постоянный ток, пропускаемый через одну из обмоток стороны низкого напряжения. Подключение тока производится многократно, каждое последующее подключение происходит с изменением полярности и уменьшением величины.

Начальное значение не должно быть меньше двойного значения ожидаемого тока холостого хода. При каждом последующем включении величина уменьшается на 30-40 %. Процесс заканчивается при токе, меньшим значения тока холостого хода.

Васильев Дмитрий Петрович

Для проведения непосредственно опыта холостого хода на вторичную обмотку трансформатора подается номинальное напряжение, с отклонением от нормы ±5%. Вывод нейтрали, если он есть, при этом не используется. Напряжение при этом – строго синусоидальное, с номинальной частотой сети.

Для проведения измерений потребуется три лабораторных прибора, с классом точности не менее 0,5. Это амперметры, вольтметры и ваттметры. амперметры подключаются в каждую фазу последовательно. вольтметры включаются на линейное напряжение всех трех фаз. Токовые обмотки ваттметров подключаются последовательно с амперметрами.

Обмотки напряжения ваттметров подключаются согласно приведенным схемам. Подается напряжение, с приборов снимаются показания.

Абрамян Евгений Павлович

Абрамян Евгений Павлович

Строго говоря, измерение производится по тем же схемам, которые использовались на заводе изготовителе для проведения опыта. Ведь полученные данные нужно будет сравнить с заводскими. Но, если источник трехфазного напряжения недоступен, можно выполнить три измерения, подавая напряжение на две фазы обмотки трансформатора, закорачивая третью, остающуюся свободной.

При этом используется только линейное напряжение, так как искажение формы кривой из-за нелинейных нагрузок в сети на него имеет минимальное влияние. По этим же схемам проводится опыт холостого хода при пониженном (малом) напряжении.

Методология проведения опыта

Потери холостого хода трансформатора определяются при создании определенного режима. Для этого прекращается снабжение током всех обмоток. Они остаются разомкнутыми. После этого производится снабжение цепей электричеством. Оно определяется только на первом контуре. Аппаратура должна работать под напряжением, которое устанавливается при его производстве производителем.

Через первичный контур силовой, сварочной или прочей установки протекают токи, которые носят название ХХ. Их величина равняется не более 3-9% от заданного производителем показателя. При этом на обмотке вторичного контура электричество отсутствует. На первичном контуре ток производит магнитный поток. Он пересекает витки обеих обмоток. При этом возникает ЭДС самоиндукции на контуре первичном и взаимоиндукции – на обмотке вторичного типа.

Например, напряжение холостого хода сварочного трансформатора небольшой и средней мощности представляет собой ЭДС взаимоиндукции.

Подход к проведению измерений

Замер потерь холостого хода может производиться в двух аспектах. Их называют потерями в стали и меди. Второй показатель говорит о рассеивании тепла в обмотках (они начинают греться). В процессе проведения опыта этот показатель очень мал. Поэтому им пренебрегают.

Данные о потере тока холостого хода трансформатора представляются в виде таблицы. В ней рассчитаны параметры для стали определенных сортов и толщины. Ток холостого хода трансформатора рассматривается в аспекте мощности, которая создается в магнитом потоке и именуется потерей в стали. Она затрачивается на нагрев листов из специального сплава. Они изолируются друг от друга лаковым покрытием. При создании таких магнитоприводов не используется метод сварки.

Таблица значений холостого хода

Суть измерения

Если по какой-то причине нарушается изоляционный слой между пластинами магнитопривода, между ними возрастают вихревые токи. При этом система начинает нагреваться. Лаковый слой постепенно разрушается. Потери при работе установки возрастают, его эксплуатационные характеристики ухудшаются.

В таком случае потери мощности в стали увеличиваются. При проведении расчетов этих характеристик в режиме холостого хода можно выявить возникшие нарушения в работе агрегата. Именно по этой причине производится соответствующий расчет.

Как проводится опыт холостого хода

Опыт холостого хода подразумевает подачу напряжения на первичную обмотку при отсутствии нагрузки. При помощи подключенных измерительных приборов измеряются электрические параметры конструкции.

Для проведения опыта холостого хода первичную обмотку включают в сеть последовательно с прибором для измерения тока- амперметром. Параллельно зажимам подключается вольтметр.

Следует иметь в виду, что предел измерения вольтметра должен соответствовать подаваемому напряжению, а при выборе амперметра нужно учитывать ориентировочные значения измеряемой величины, которые зависят от мощности трансформатора.

Коэффициент трансформации

Наиболее просто определяется коэффициент трансформации. Для этого сравнивается входное и выходное напряжение. Расчет производится по следующей формуле:

Данное отношение справедливо для всех обмоток трансформатора.

Однофазные трансформаторы

В однофазных трансформаторах показания амперметра характеризуют потребляемый ток при отсутствии нагрузки. Данные показания являются конечными и нет необходимости в дальнейших вычислениях.

Трехфазные

Чтобы проверить трехфазный трансформатор, требуется усложнение схемы подключения. Необходимо наличие следующих приборов:

  • амперметры для измерения тока в каждой фазе;
  • вольтметры для измерения междуфазных напряжений первичной обмотки;
  • вольтметры для измерения междуфазных напряжений вторичной обмотки.

При проведении опыта холостого хода производятся следующие вычисления:

  • рассчитывается среднее значение тока по показаниям амперметра;
  • среднее значение напряжения первичной и вторичной обмоток.

Коэффициент трансформации вычисляется по полученным значениям напряжения аналогично однофазной системе.





Фото 2
Фото 4

Коэффициент трансформации

При определении работы установки применяется такое понятие, как коэффициент трансформации. Его формула представлена далее:

К = Е1/Е2 = W1/W2

Отсюда следует, что напряжение на вторичном контуре будет определяться соотношением количества витков. Чтобы иметь возможность регулировать выходное электричество, в конструкцию установки вмонтирован специальный прибор. Он переключает число витков на первичном контуре. Это анцапфа.

Для проведения опыта на холостом ходу регулятор ставится в среднее положение. При этом измеряется коэффициент.

Однофазные приборы

Для проведения представленного опыта, при использовании понижающего или повышающего бытового агрегата, в расчет берется представленный коэффициент. При этом используют два вольтметра. Первый прибор подключается к первичной обмотке. Соответственно второй вольтметр подсоединяется к вторичному контуру.

Схема трансформатора при холостом ходе

Входное сопротивление измерительных приборов должно соответствовать номинальным характеристикам установки. Она может работать в понижающем или повышающем режиме. Поэтому при необходимости провести ремонтные работы, на нем измеряют не только подачу низкого, но и высокого напряжения.

Трехфазные приборы

Для трехфазных агрегатов в ходе проведения опыта исследуются показатели на всех контурах. При этом потребуется применять сразу 6 вольтметров. Можно использовать один прибор, который будет подключаться поочередно ко всем точкам измерения.

Если установленное производителем значение на первичной обмотке превышает 6 кВ, на нее подают ток 380 В. При измерении в высоковольтном режиме нельзя определить показатели с требуемым классом точности. Поэтому замер производят в режиме низкого напряжения. Это безопасно.

Применение коэффициента

В процессе проведения измерения анцапфу перемещают во все установленные производителем положения. При этом замеряют коэффициент трансформации. Это позволяет определить наличие в витках замыкания.

Если показания по фазам будут иметь разброс при замерах больше, чем 2%, а также их снижение в сравнении с предыдущими данными, это говорит об отклонениях в работе агрегата. В первом случае в системе определяется короткое замыкание, а во втором – нарушение изоляции обмоток. Агрегат не может при этом работать правильно.

Такие факты требуют подтверждения. Например, это может быть измерение сопротивления. Влиять на увеличение разброса показателей коэффициента могут возрастание сопротивления между контактами анцапфы. При частом переключении возникает такая ситуация.

Как проводится опыт холостого хода

При проведении опыта холостого хода появляется возможность определить следующие характеристики агрегата:

  • коэффициент трансформации;
  • мощность потерь в стали;
  • параметры намагничивающей ветви в замещающей схеме.

Для опыта на устройство подаётся номинальная нагрузка.

При проведении опыта холостого хода и расчёте характеристик на основе данной методики необходимо учитывать разновидность устройства.

В данном состоянии трансформатор обладает нулевой полезной мощностью по причине отсутствия на выходной катушке электротока. Поданная нагрузка преобразуется в потери тепла на входной катушке I02×r1 и магнитные потери сердечника Pm. По причине незначительности значения потерь тепла на входе, их в большинстве случае в расчёт не принимают. Поэтому общее значение потерь при холостом ходе определяется магнитной составляющей.

Далее приведены особенности расчёта характеристик для различных видов трансформаторов.

Для однофазного трансформатора

Опыт холостого хода для однофазного трансформатора проводится с подключением:

  • вольтметров на первичной и вторичной катушках;
  • ваттметра на первичной обмотке;
  • амперметра на входе.

Приборы подключаются по следующей схеме:

1

Для определения электротока холостого хода Iо используют показания амперметра. Его сравнивают со значением электротока по номинальным характеристикам с использованием следующей формулы, получая итог в процентах:

Iо% = I0×100/I10.

Чтобы определить коэффициент трансформации k, определяют величину номинального напряжения U1н по показаниям вольтметра V1, подключённого на входе. Затем по вольтметру V2 на выходе снимают значение номинального напряжения U2О.

Коэффициент рассчитывается по формуле:

K = w1/w2 = U1н/ U2О.

Величина потерь составляет сумму из электрической и магнитной составляющих:

P0 = I02×r1 + I02×r0.

Но, если пренебречь электрическими потерями, первую часть суммы можно из формулы исключить. Однако незначительная величина электрических потерь характерна только для оборудования небольшой мощности. Поэтому при расчёте характеристик мощных агрегатов данную часть формулы следует учитывать.

потери-хх

Потери холостого хода для трансформаторов мощностью 30-2500 кВА

Для трёхфазного трансформатора

Трёхфазные агрегаты испытываются по аналогичной схеме. Но напряжение подаётся отдельно по каждой фазе, с соответствующей установкой вольтметров. Их потребуется 6 единиц. Можно провести опыт с одним прибором, подключая его в необходимые точки поочерёдно.

При номинальном напряжении электротока обмотки более 6 кВ, для испытания подаётся 380 В. Высоковольтный режим для проведения опыта не позволит добиться необходимой точности для определения показателей. Кроме точности, низковольтный режим позволяет обеспечить безопасность.

Применяется следующая схема:

2

Работа аппарата в режиме холостого хода определяется его магнитной системой. Если речь идёт о типе прибора, сходного с однофазным трансформатором или бронестержневой системе, замыкание третьей гармонической составляющей по каждой из фаз будет происходить отдельно, с набором величины до 20 процентов активного магнитного потока.

В результате возникает дополнительная ЭДС с достаточно высоким показателем – до 60 процентов от главной. Создаётся опасность повреждения изолирующего слоя покрытия с вероятностью выхода из строя аппарата.

Предпочтительнее использовать трехстержневую систему, когда одна из составляющих будет проходить не по сердечнику, с замыканием по воздуху или другой среде (к примеру, масляной), с низкой магнитной проницаемостью. В такой ситуации не произойдёт развитие большой дополнительной ЭДС, приводящей к серьёзным искажениям.

Для сварочного трансформатора

Для сварочных трансформаторов холостой ход – один из режимов их постоянного использования в работе. В процессе выполнения сварки при рабочем режиме происходит замыкание второй обмотки между электродом и металлом детали. В результате расплавляются кромки и образуется неразъёмное соединение.

После окончания работы электроцепь разрывается, и агрегат переходит в режим холостого хода. Если вторичная цепь разомкнута, величина напряжения в ней соответствует значению ЭДС. Эта составляющая силового потока отделяется от главного и замыкается по воздушной среде.

Чтобы избежать опасности для человека при нахождении аппарата на холостом ходу, значение напряжения не должно превышать 46 В. Учитывая, что у отдельных моделей значение данных характеристик превышает указанное, достигая 70 В, сварочный агрегат выполняют со встроенным ограничителем характеристик для режима холостого хода.

Блокировка срабатывает за время, не превышающее 1 секунду с момента прерывания рабочего режима. Дополнительная защитная мера – устройство заземления корпуса сварочного агрегата.

Видео: измерение тока холостого хода

Инструменты

Занимаясь поисками подходящего сварочного трансформатора, многие отказываются от заводских моделей в пользу самодельных. Причины такого решения могут быть самые разнообразные, начиная от неприемлемых цен и заканчивая желанием сделать сварочный трансформатор самостоятельно. По сути особых сложностей в том, как сделать сварочный трансформатор, нет, к тому же, самодельный сварочный трансформатор может по праву считаться предметом гордости любого хозяина. Но при его создании невозможно обойтись без знаний об устройстве и схеме трансформатора, его характеристиках и расчетах по ним.

Рабочие характеристики сварочного трансформатора

Любой электроинструмент обладает определенными рабочими характеристиками и сварочный трансформатор не исключение. Но кроме привычных, таких как мощность, количество фаз и требуемое для работы напряжение в сети, сварочный трансформатор имеет целый набор уникальных характеристик, каждая из которых позволит безошибочно подобрать в магазине аппарат под определенный вид работ. Для тех же, кто собирается изготовить сварочный трансформатор своими руками, знание этих характеристик потребуется для выполнения расчетов.

Но прежде чем перейти к детальному описанию каждой характеристики, необходимо разобраться, что собой представляет базовый принцип работы сварочного трансформатора. Он довольно прост и заключается в преобразовании входящего напряжения, а именно его понижении. Понижающая вольтамперная характеристика сварочного трансформатора имеет следующую зависимость – при понижении напряжения (Вольт) возрастает сила тока сварки (Ампер), что и позволяет плавить и сваривать металл. На основе этого принципа и построена вся работа сварочного трансформатора, а также связанные с ней другие рабочие характеристики.

Напряжение сети и количество фаз

С этой характеристикой все довольно просто. Она указывает на требуемое для работы сварочного трансформатора напряжение. Это может быть 220 В или 380 В. На практике напряжение в сети может немного колебаться в пределах +/- 10 В, что может сказаться на стабильной работе трансформатора. При расчетах для сварочного трансформатора напряжение в сети является основополагающей характеристикой для расчетов. К тому же, от напряжения в сети зависит количество фаз. Для 220 В – это две фазы, для 380 В – три. В расчетах это не учитывается, но для подключения сварочного аппарата и его работы это важный момент. Также есть отдельная категория трансформаторов, которые могут работать как от 220 В, так и от 380 В.

Номинальный сварочный ток трансформатора

Рабочие характеристики сварочного трансформатора

Это основная рабочая характеристика любого сварочного трансформатора. От величины силы сварочного тока зависит возможность резки и сварки металла. Во всех сварочных трансформаторах это значение указывается максимальным, так как именно столько способен выдать трансформатор на пределе возможностей. Конечно, номинальный сварочный ток можно регулировать для возможности работы электродами различного диаметра, и для этого в трансформаторах предусмотрен специальный регулятор. Необходимо отметить, что для бытовых сварочных трансформаторов, созданных своими руками, сварочный ток не превышает 160 – 200 А. Это связано в первую очередь с весом самого трансформатора. Ведь чем больше сила сварочного тока, тем больше требуется витков медного провода, а это лишние неподъемные килограммы. В дополнение на сварочный трансформатор цена зависит от металла для проводов обмоток, и чем больше провода было потрачено, тем дороже обойдется сам аппарат.

Диаметр электрода

В работе со сварочным трансформатором для сварки металла используются наплавляемые электроды различного диаметра. При этом возможность использовать электрод определенного диаметра зависит от двух факторов. Первый – номинальный сварочный ток трансформатора. Второй – толщина металла. В приведенной ниже таблице указаны диаметры электродов в зависимости от толщины металла и сварочного тока самого трансформатора.

Диаметр электрода

Как видно из этой таблицы, использование 2 мм электрода будет просто бессмысленным при силе тока в 200 А. Или наоборот, 4 мм электрод бесполезен при силе тока в 100 А. Но довольно часто приходится выполнять сварку металла различной толщины одним и тем же аппаратом и для этого сварочные трансформаторы оборудуются регуляторами силы тока.

Пределы регулирования сварочного тока

Для сварки металла различной толщины используются электроды различного диаметра. Но если сила сварочного тока будет слишком большой, то металл при сварке прогорит, а если слишком маленькой, то не удастся его расплавить. Потому в сварочных трансформаторах для этих целей встраивается специальный регулятор, позволяющий понижать номинальный сварочный ток до определенного значения. Обычно в самодельных сварочных трансформаторах создается несколько ступеней регулировки, начиная от 50 А и заканчивая 200 А.

Номинальное рабочее напряжение

Как уже отмечалось, сварочный трансформатор преобразует входящее напряжение до более низкого значения, составляющего 30 – 60 В. Это и есть номинальное рабочее напряжение, которое необходимо для поддержания стабильного горения дуги. Также от этого параметра зависит возможность сварки металла определенной толщины. Так для сварки тонколистового металла требуется низкое напряжение, а для более толстого – высокое. При расчетах этот показатель весьма важен.

Номинальный режим работы

Одной из ключевых рабочих характеристик сварочного трансформатора является его номинальный режим работы. Он указывает на период беспрерывной работы. Этот показатель для заводских сварочных трансформаторов обычно составляет около 40%, а вот для самодельных он может быть не выше 20 – 30%. Это значит, что из 10 минут работы можно беспрерывно варить 3 минуты, а 7 давать отдохнуть.

Мощность потребления и выходная

Как и любой другой электроинструмент, сварочный трансформатор потребляет электроэнергию. При расчетах и создании трансформатора показатель потребляемой мощности играет важную роль. Что касается выходной мощности, то её также следует учитывать, так как коэффициент полезного действия сварочного трансформатора напрямую зависит от разницы между этими двумя показателями. И чем меньше эта разница, тем лучше.

Напряжение холостого хода

Одной из важных рабочих характеристик является напряжение холостого хода сварочного трансформатора. Эта характеристика отвечает за легкость появления сварочной дуги, и чем выше будет напряжение, тем легче появится дуга. Но есть один важный момент. Для обеспечения безопасности человека, работающего с аппаратом, напряжение ограничивается 80 В.

Схема сварочного трансформатора

Как уже отмечалось, принцип работы сварочного трансформатора заключается в понижении напряжения и повышении силы тока. В большинстве случаев устройство сварочного трансформатора довольно простое. Он состоит из металлического сердечника, двух обмоток – первичной и вторичной. На представленном ниже фото изображено устройство сварочного трансформатора.

Устройство сварочного трансформатора

С развитием электротехники принципиальная схема сварочного трансформатора совершенствовалась, и сегодня производятся сварочные аппараты, в схеме которых используются дроссели, диодный мост и регуляторы силы тока. На представленной схеме видно, как диодный мост интегрирован в сварочный трансформатор (фото ниже).

Схема трансформатора с диодным мостом

Одним из самых популярных самодельных сварочных трансформаторов является трансформатор с тороидальным сердечником, в силу его малого веса и прекрасных рабочих характеристик. Схема такого трансформатора представлена ниже.

Сегодня существует множество различных схем сварочных трансформаторов, начиная от классических и заканчивая схемами инверторов и выпрямителей. Но для создания сварочного трансформатора своими руками лучше выбирать более простую и надежную схему, не требующую использования дорогой электроники. Как, например, сварочный тороидальный трансформатор или трансформатор с дросселем и диодным мостом. В любом случае для создания сварочного трансформатора, кроме схемы, придется выполнить определенные расчеты, чтобы получить требуемые рабочие характеристики.

Расчет сварочного трансформатора

При создании сварочного трансформатора под конкретные цели приходится определять его рабочие характеристики заранее. Кроме этого, расчет сварочного трансформатора выполняется для определения количества витков первичной и вторичной обмоток, площади сечения сердечника и его окна, мощности трансформатора, напряжения дуги и прочего.

Расчет сварочного трансформатора

Для выполнения расчетов потребуются следующие исходные данные:

  • входящее напряжение первичной обмотки (В) U1;
  • номинальное напряжение вторичной обмотки (В) U2;
  • номинальная сила тока вторичной обмотки (А) I;
  • площадь сердечника (см2) Sс;
  • площадь окна (см2)So;
  • плотность тока в обмотке (A/мм2).

Рассмотрим на примере расчета для тороидального трансформатора со следующими параметрами: входящее напряжение U1=220 В, номинальное напряжение вторичной обмотки U2=70 В, номинальная сила тока вторичной обмотки 200 А, площадь сердечника Sс=45 см2, площадь окна So=80 см2, плотность тока в обмотке составляет 3 A/мм2.

Вначале рассчитываем мощность тороидального трансформатора по формуле:

P габаритн = 1,9*Sc*So. В результате получим 6840 Вт или упрощенно 6,8 кВт.

Важно! Данная формула применима только для тороидальных трансформаторов. Для трансформаторов с сердечником типа ПЛ, ШЛ используется коэффициент 1,7. Для трансформаторов с сердечником типа П, Ш – 1,5.

Следующим шагом будет расчет количества витков для первичной и вторичной обмоток. Чтобы это сделать, вначале придется вычислить необходимое количество витков на 1 В. Для этого используем следующую формулу: K = 35/S. В результате получим 0,77 витка на 1 В потребляемого напряжения.

Важно! Как и в первой формуле, коэффициент 35 применим только для тороидальных трансформаторов. Для трансформаторов с сердечником типа ПЛ, ШЛ используется коэффициент 40. Для трансформаторов с сердечником типа П, Ш – 50.

Далее рассчитываем максимальный ток первичной обмотки по формуле: Imax = P/U. В результате получим ток для первичной обмотки 6480/220=31 А. Для вторичной обмотки силу тока берем за константу в 200 А, так как возможно придется варить электродами с диаметром от 2 до 3 мм металл различной толщины. Конечно, на практике 200 А – это предельная сила тока, но запас в пару десятков ампер позволит аппарату работать более надежно.

Теперь на основании полученных данных рассчитываем количество витков для первичной и вторичной обмоток в трансформаторе со ступенчатым регулированием в первичной обмотке. Расчет для вторичной обмотки выполняем по следующей формуле W2 =U2*K, в результате получим 54 витка. Далее переходим к расчету ступеней первичной обмотки. Для этого используем формулу W1ст = (220*W2)/Uст.

Uст – необходимое выходное напряжение вторичной обмотки.

W2 – количество витков вторичной обмотки.

W1ст – количество витков первичной обмотки определенной ступени.

Но прежде чем приступить к расчету витков ступеней первичной обмотки, необходимо определить напряжение для каждого. Сделать это можно по формуле U=P/I, где:

U – напряжение (В).

Например, нам требуется сделать четыре ступени со следующими показателями номинальной силы тока на вторичной обмотке: 160 А, 130 А, 100 А и 90 А. Такой разброс понадобится для использования электродов различного диаметра и сварки металла различной толщины. В результате получим Uст = 40,5 В для первой ступени, 50 В для второй ступени, 65 В для третьей ступени и 72 В для четвертой. Подставив полученные данные в формулу W1ст = (220*W2)/Uст, рассчитываем количество витков для каждой ступени. W1ст1 = 293 витка, W1ст2 = 238 витков, W1ст3 = 182 витка, W1ст4 = 165 витков. В процессе намотки провода на каждом из этих витков делается отвод для регулятора.

Осталось рассчитать сечение провода для первичной и вторичной обмоток. Для этого используем показатель плотности тока в проводе, который равен 3 A/мм2. Формула довольно проста – необходимо максимальный ток каждой из обмоток разделить на плотность тока в проводке. В результате получим для первичной обмотки сечение провода Sперв = 10 мм2. Для вторичной обмотки сечение провода Sвтор = 66 мм2.

Создавая сварочный трансформатор своими руками, необходимо выполнить все вышеперечисленные расчеты. Это поможет правильно подобрать все необходимые детали и затем собрать из них аппарат. Для новичка выполнение расчетов может показаться весьма запутанным занятием, но если вникнуть в суть выполняемых действий, все окажется не таким уж и сложным.

Методика и теоретические основы проведения опыта

Режим холостого хода трансформатора достигается сравнительно просто. Для этого достаточно отключить нагрузку от всех его обмоток, оставив их разомкнутыми, а затем – включить его в сеть. Для точности эксперимента желательно, чтобы напряжение в сети было равно номинальному для данного агрегата.

Через первичную обмотку протекает ток Io, называемый током ХХ. Его величина не превышает 3-10 % от номинального. Напомним, никакой нагрузки на вторичной обмотке нет, поэтому стоит пояснить процессы, проходящие внутри, чтобы понять: откуда берется этот ток.

Ток ХХ создает магнитный поток Фо в магнитопроводе, пересекающий витки первичной и вторичной обмоток. За счет него на первичной обмотке возникает эдс самоиндукции Е1, во вторичной появляется эдс взаимоиндукции Е2.

Эдс самоиндукции Е1 на первичное напряжение U1 влияет незначительно. Если подключить к ней вольтметр, то он измерит величину U1. А эдс Е2 можно практически считать напряжением U2, поскольку ток ее нагрузки отсутствует. К примеру, напряжение холостого хода сварочного трансформатора порядка 60В, это – эдс Е2. При возникновении дуги Е2 резко снижается до десятка вольт – это величина под нагрузкой U2.

Потери полезной мощности в трансформаторе при его эксплуатации делятся на две составляющие: потери в меди и потери в стали. Под потерями в меди подразумевают мощность, рассеиваемую в качестве тепла в обмотках. При проведении опыта ХХ ток через первичную обмотку достаточно мал, и потерями в меди можно пренебречь.

Работа трансформатора в режиме холостого хода сопровождается расходом мощности на создание замкнутого магнитного потока в его магнитопроводе. Ее и называют мощностью потерь в стали. Она уходит на нагревание пластин магнитопровода. Он собран из отдельных тонких листов специального сплава, изолированных друг от друга лаком. При сборке не используется сварка, только болтовые соединения. Это сделано для минимизации вихревых токов, возникающих из-за того, что магнитный поток переменный.

Если изоляция между пластинами нарушается, то возникающие между ними вихревые токи нагревают магнитопровод. Это приводит к дальнейшему разрушению лакового слоя. Мощность потерь в стали при этом увеличивается, что увеличит потери холостого хода трансформатора.

Коэффициент трансформации

Для трансформатора существует понятие коэффициента трансформации, формула которого:

Ктр = Е1/Е2 = W1/W2

В итоге напряжение, которое будет на выводах вторичной обмотки, определяется соотношением количества витков обмоток. Это свойство используется для корректировки его величины на выходе.

Для этого в конструкцию входит регулирующее устройство, ступенчато переключающее число витков первичной обмотки. Положений для регулировки у него бывает от 3 до 5, при этом выходное напряжение с каждым шагом регулирования изменяется на 5% выше или ниже номинального. Переключающее устройство называют анцапфой.

Анцапфа трансформатора

Опыт ХХ проводят на среднем положении анцапфы, соответствующем номинальному значению.

При проведении опыта ХХ коэффициент трансформации измеряется. Для этого используются два вольтметра. Один из них подключается к первичной обмотке и измеряет U1. Второй подключается к вторичной обмотке, он измеряет эдс ХХ. Входное сопротивление вольтметра при этом должно быть достаточно большим, чтобы не влиять на измеряемую величину. Деление показаний вольтметров дает величину коэффициента трансформации.

Трансформатор – может работать как повышающий, так и понижающий. Поэтому при проведении ремонтных работ на нем используется подача не только высокого напряжения на обмотку ВН, но и низкого на НН. Даже, если это измерительный трансформатор, имеющий небольшое вторичное напряжение, составляющее 100 В.

Мы рассмотрели холостой ход однофазного трансформатора. Для трехфазных устройств измеряется коэффициент трансформации на всех трех фазах, для чего используются либо одновременно 6 вольтметров, включенных на линейные напряжения трехфазной системы, либо один, подключаемый к точкам измерений поочередно.

Если номинальное напряжение питания первичной обмотки велико (6 кВ и выше), то на первичную обмотку подают 380 В. Для высоковольтных измерений невозможно применить приборы, обладающие соответствующим классом точности. К тому же процесс измерений на низком напряжении питания безопаснее.

Коэффициент должен измеряться на всех позициях анцапфы.

Коэффициент трансформации – показатель, свидетельствующий о том, есть ли в обмотках витковое замыкание. Разброс показаний по фазам более 2% или снижение их по сравнению с предыдущими данными дает основания полагать, что изоляция проводников обмоток где-то нарушена. Подозрение потребует подтверждения другими методами испытаний, например, измерением сопротивления. Также причиной увеличения разброса коэффициента трансформации может быть и повышенное сопротивление между контактами переключающего устройства – анцапфы. Что чаще всего и происходит, особенно если ею часто пользуются.

Измерение тока холостого хода

Для проверки тока холостого хода применяются амперметры прямого включения, присоединяемые последовательно с первичной обмоткой. Такое измерение тока производят при напряжении обмотки, равном номинальному.

У эксплуатируемых или вводимых в эксплуатацию трехфазных силовых трансформаторов замеры производятся для трех фаз одновременно или поочередно. Испытанию подлежат агрегаты, мощность которых 1000 кВА и выше.

Измерение мощности потерь в стали

Измерение потерь в магнитопроводе производят также только у мощных агрегатов. Для этого измеряют мощность, которая потребляется первичной обмоткой на холостом ходу. Можно использовать пониженное напряжение, подключаемое к обмотке через ваттметр. Это прибор, способный напрямую измерять мощность. Использование амперметра и вольтметра (косвенный метод измерения) подразумевает затем вычисление мощности путем умножения их показаний друг на друга. Рассчитанный результат получается искаженным, так как не учитывается коэффициент мощности – косинус угла между током и напряжением. Холостой ход трансформатора приводит к появлению угла порядка 90 градусов, что весьма существенно.

Ваттметр производит измерение уже с учетом коэффициента мощности, поэтому дорабатывать его показания нет необходимости. Измерение параметров напрямую всегда точнее, чем использование косвенного метода измерений. При наличии амперметра, вольтметра и ваттметра можно рассчитать по их показаниям коэффициент мощности трансформатора:

Cos ϕ = P1/U1∙Io

Производится вычисление из косинуса угла между напряжением и током. Теперь может быть построена векторная диаграмма. Расчет потерь производится по каждой фазе отдельно, для чего используется таблица.

Для измерений обязательно использование именно той схемы, которая применялась на заводе изготовителе (если о ней что-нибудь известно). Полученные значения не нормируются, но обязательно сравниваются с данными предыдущей проверки. Эта характеристика важна: если потери год за годом повышаются, это означает, что качество изоляции стальных пластин магнитопровода трансформатора ухудшается. Процесс этот необратим, повреждение будет развиваться в процессе эксплуатации, и скоро потребуется ремонт. Лучше выполнить его в плановом порядке.

Определение поперечного сечения стержня и ярма сердечника трансформатора

Отношение потерь в меди обмоток трансформатора к потерям в стали сердечника в маломощных силовых трансформаторах, работающих приблизительно при номинальных нагрузках, по условиям максимума КПД желательно иметь в пределах:

Отношение веса стали сердечника к весу меди обмотки составляет:

где Bс и j берутся из позиции 2.

Удельные потери в стали сердечника kс при B = 1 Тл и f = 50 Гц, по данным ГОСТ 802-581, в зависимости от марки стали и толщины листа δс, составляют:

– марка стали Э41:

при δс = 0,5 мм – kс = 1,6 Вт/кг при δс = 0,35 мм – kс = 1,35 Вт/кг

– марка стали Э11:

при δс = 0,5 мм – kс = 3,3 Вт/кг

– марки стали Э310 и Э320:

при δс = 0,5 мм – kс = 1,25 Вт/кг; kс = 1,15 Вт/кг при δс = 0,35 мм – kс = 1,00 Вт/кг; kс = 0,9 Вт/кг

Поперечное сечение стержня сердечника трансформатора определяется по следующей формуле:

где P1 = U1 × I1 – потребляемая мощность однофазным трансформатором, ВА; P1 = √3 × U1 × I1 – потребляемая мощность, трехфазным трансформатором, ВА; α = Gс / Gм – отношение веса стали к весу меди обмотки, определяемое по предыдущей формуле; U1 и f – берутся из задания; I1 – из позиции 1, Bс и j – из позиции 2.

Постоянный коэффициент C в среднем может быть приближенно принят:

для однофазных стержневых трансформаторов ……… для однофазных броневых трансформаторов ………… для трехфазных стержневых трансформаторов ……… С = 0,6 С = 0,7 С = 0,4

Поперечное сечение ярма трансформатора стержневого типа можно принять:

Sя = (1,0 ÷ 1,2) × Sс [см2] .

Поперечное сечение ярма трансформатора броневого типа:

Размер сторон квадратного поперечного сечения стержня (рисунки 2, 3 и 4):

Рисунок 2. Трансформаторы стержневого типа: а – с двумя катушками; б – с одной катушкой Рисунок 3. Трансформатор броневого типа
Рисунок 4. Трехфазные трансформаторы с различной штамповкой пластин: а – с Ш-образными пластинами; б – с прямоугольными пластинами

Возможно отступление от квадратной формы поперечного сечения стержня, при этом bс = (1,2 ÷ 2,0) × aс.

Высота ярма (рисунки 2, 3 и 4):

где kз – коэффициент заполнения сечения сердечника сталью, выбираемый из таблицы 1 в зависимости от принятой толщины листа δс. По размерам aс, bс и hя можно выбрать ближайшую стандартную П-образную или Ш-образную пластины сердечника трансформатора из таблицы 2.

Таблица 1

Толщина листа, мм Коэффициент заполнения поперечного сечения стержня сталью Изоляция между листами
0,5 0,35 0,2 0,1 0,92 0,86 0,76 0,65 лак – – –

Таблица 2

Тип сердечника Размеры сердечника, мм
H b
Ш-10 × 10 Ш-10 × 15 Ш-10 × 20 Ш-12 × 12 Ш-12 × 18 Ш-12 × 24 Ш-14 × 14 Ш-14 × 21 Ш-14 × 28 Ш-16 × 16 Ш-16 × 24 Ш-16 × 32 Ш-18 × 18 Ш-18 × 27 Ш-18 × 36 Ш-20 × 20 Ш-20 × 30 Ш-20 × 40 Ш-24 × 24 Ш-24 × 36 Ш-24 × 48 Ш-30 × 30 Ш-30 × 45 Ш-30 × 60 Ш-40 × 40 Ш-40 × 60 Ш-40 × 80 10 10 10 12 12 12 14 14 14 16 16 16 18 18 18 20 20 20 24 24 24 30 30 30 40 40 40 10 15 20 12 18 24 14 21 28 16 24 32 18 27 36 20 30 40 24 36 48 30 45 60 40 60 80 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9 10 10 10 12 12 12 15 15 15 20 20 20 15 15 15 18 18 18 21 21 21 24 24 24 27 27 27 30 30 30 36 36 36 45 45 45 60 60 60 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9 10 10 10 12 12 12 15 15 15 20 20 20 bс – толщина пакета

В этом случае возможно отступление от квадратной формы поперечного сечения стержня для получения заданного значения сечения Sс; при этом обычно bс ≥ aс.

Специальные типы трансформаторов

Наиболее часто в электротехнических установках используются следующие специальные типы трансформаторов: автотрансформаторы, многообмоточные и трехфазные трансформаторы.

Автотрансформатором

Называется такой трансформатор, у которого имеется только одна обмотка, часть которой принадлежит одновременно вторичной и первичной цепям. Схема однофазного трансформатора изображена на рис. 9.

Режим холостого хода автотрансформатора, когда I2 = 0, ничем не отличается от режима холостого хода обычного трансформатора. Подводимое к трансформатору напряжение U1 = UAB равномерно распределяется между витками первичной обмотки. Рис. 9 Вторичное напряжение

Выбор размеров окна сердечника и укладка обмоток на стержнях трансформатора

Форма окна сердечника трансформатора оказывает значительное влияние на величину намагничивающего тока, расход стали на сердечник и меди на обмотки трансформатора. Излишняя высота окна сердечника H повышает намагничивающий ток Iμ и увеличивает расход стали и вес трансформатора. Заниженная высота окна повышает нагрев обмотки и увеличивает расход меди на них.

Как показывает опыт, наивыгоднейшая форма окна сердечника трансформатора получается при отношении высоты окна H к его ширине b в пределах 2,5 – 3 (рисунки 2, 3 и 4).

Если при расчете сердечника трансформатора принята стандартная форма П-образных или Ш-образных пластин из таблицы 2, то размеры H и b берутся из этой же таблицы.

При расположении обмоток на стержнях сердечника трансформатора нужно иметь в виду следующее: чем меньше диаметр обмоточного провода, тем выше его стоимость. Поэтому для уменьшения общей стоимости трансформатора целесообразно обмотку с более тонким проводом располагать на стержне первой.

Для уточнения ширины окна сердечника b необходимо вычислить радиальную толщину обмоток трансформатора.

Число витков первичной обмотки в одном слое:

где d1н – берется из позиции 5; ε1 – расстояние от обмотки до ярма, обычно ε1 = 2 – 5 мм.

Число слоев первичной обмотки однофазного однокатушечного или трехфазного трансформаторов (рисунок 5, б и в):

Полученное значение m1 округляется до ближайшего большего целого числа.

В случае однофазного двухкатушечного трансформатора стержневого типа число витков на стержне будет (рисунок 5, а):

Толщина первичной обмотки:

где γ1 – толщина изоляционной прокладки между слоями. Изоляционные прокладки следует применять лишь при напряжении между слоями свыше 50 В. Толщина изоляционных прокладок обычно не превышает 0,03 – 0,10 мм; d1н – берется из позиции 5.

Рисунок 5. Формы катушек маломощных двухобмоточных трансформаторов: а – стержневого двухкатушечного; б – стержневого однокатушечного; в – броневого

Число витков вторичной обмотки в одном слое:

Число слоев вторичной обмотки однофазного однокатушечного или трехфазного трансформаторов (рисунок 5, б и в):

Полученное значение m2 также округляется до ближайшего большего числа.

В однофазном двухкатушечном трансформаторе стержневого типа число витков на стержне W2 / 2 (рисунок 5, а):

Толщина вторичной обмотки:

где d2н берется из позиции 5.

Ширина окна сердечника однофазного трансформатора с одной круглой катушкой (рисунок 5, б):

b = ε0 + ε2 + δ1 + δ12 + δ2 + ε3 ,

где

– зазор от стержня до катушки (рисунок 5, б); ε0 = 1,0 – 2,0 – толщина изоляции между катушкой и стержнем, выполняемой обычно из электрокартона; δ12 – толщина изоляции между обмотками, выполняемая обычно в маломощных трансформаторах из электрокартона и лакоткани толщиной 0,10 – 1,0 мм; ε3 – расстояние от катушки до второго стержня, принимаемое обычно в пределах ε3 = 3 – 5 мм; δ1 и δ2 – толщина соответствующих обмоток, мм.

Ширина окна однофазного трансформатора с двумя круглыми катушками, а также трехфазного трансформатора с аналогичными катушками (рисунок 5, а):

b = 2 × (ε0 + ε2 + δ1 + δ12 + δ2) + ε3 .

Ширина окна однофазного трансформатора с одной прямоугольной катушкой (рисунок 5, в):

b = k2 × (ε0 + δ1 + δ12 + δ2) + ε3 ,

где k2 = 1,2 – 1,3 – коэффициент увеличения толщины катушки за счет неплотностей прилегания слоев, в результате чего катушка приобретает овальный вид.

Ширина окна однофазного трансформатора с двумя прямоугольными катушками, а также трехфазного трансформатора с аналогичными катушками:

b = 2 × k2 × (ε0 + δ1 + δ12 + δ2) + ε3.

Проверка трансформатора на нагревание

Превышение температуры обмоток и сердечника трансформатора над температурой окружающей среды приближенно можно определить по формуле:

где Pм – суммарные потери в меди обмоток из позиции 7; Pс – потери в стали сердечника из позиции 8; aо = (10 – 12) × 10-4 – средний коэффициент теплоотдачи открытой поверхности обмоток и сердечника, Вт/см2 × град; Sсер и Sобм – открытые поверхности сердечника и обмоток трансформатора, см2; ΔΘ° — перепады температуры от внутренних слоев обмоток к наружным, который для пропитанных лаком обмоток приближенно может быть принят 10 – 15°С.

Для того чтобы не нарушать хронологию изложения материала взятого из источника представленного ниже, в тексте указан, не действующий на сегодняшний день, стандарт ГОСТ 802-58. Его действующим аналогом, является ГОСТ 21427.1-83. Соответственно марки стали Э11, Э41, Э310, Э320, Э34, Э340, Э44, Э47 и Э48 являются устаревшими и не производятся. Выбирая сталь при расчете сердечника пользуйтесь ГОСТ 21427.1-83.

Анализ результатов измерения

При приемосдаточных испытаниях и капитальном ремонте полученные данные сравниваются с протоколом о соответствующих испытаниях, проведенных на заводе после изготовления трансформатора. Расхождение более 5 % не допускается.

Для однофазных трансформаторов в этих же случаях мощность потерь не должна отличаться от исходной величины более, чем на 10%.

В эксплуатации измеряется только ток холостого хода на основании опыта с номинальным напряжением или мощность потерь при пониженном. ПТЭЭП при этом не нормирует отклонения от нормы.

Однако, при подозрении на повреждение в трансформаторе метод измерения потерь с использованием трех последовательно проведенных опытов дает очень ценный результат. Поскольку обмотки фаз трансформатора находятся в неравных условиях, то можно не только вычислить, есть ли там дефект, но и определить дефектную фазу.

Путь магнитного потока при возбуждении выводов АВ и ВС одинаков. Поэтому и мощности потерь для опытов на этих фазах не будут отличаться. При возбуждении фаз АС путь, пройденный магнитным потоком, длиннее, поэтому мощность потерь будет на 25-50% превышать предыдущие. Сравнивая эти показатели, можно выявить, на какой фазе есть дефект.

Режим холостого хода трансформатора

Холостым ходом (ХХ) называют такое подключение устройства, когда на первичную обмотку подается номинальное переменное напряжение, а цепи всех вторичных – разомкнуты (нагрузки не подключены).

В преобразователе напряжения, деление обмоток (катушек) на первичную и вторичные условно. Любая из них становится первичной, когда на нее поступает исходное переменное напряжение. Прочие, в них наводится ЭДС — становятся, соответственно, вторичными.

Опыт холостого хода проводится по схеме показанной на рисунке

Следовательно, любой трансформатор, соответственно способу подключения, может быть как понижающим, так и повышающим (кроме разделительного – с коэффициентом трансформации, равным единице).

Поскольку цепь вторичной катушки разъединена, тока в ней нет (I2 = 0). В первичной протекает I1, формирующий в магнитопроводе поток вектора магнитной индукции Ф1. Последний меняется по синусоидальному закону, но из-за перемагничивания стали отстает по фазе от I1 на угол B (угол потерь).

Применяют следующую терминологию:

  • I1: ток ХХ трансформатора;
  • Ф1: рабочий магнитный поток.

Под действием Ф1 во всех катушках возникает ЭДС:

  • в первичной – самоиндукции (Е1);
  • во вторичных – взаимоиндукции (Е2).

Зависимость ЭДС от различных параметров определяется формулами:

Е1 = 4,44 * f * W1 * Ф1max *10 -8 ,

Е2 = 4,44 * f * W2 * Ф1max * 10 -8 , где

W1 и W2 — число витков в обмотках;

Ф1max — величина магнитного потока в точке максимума.

Следовательно, числовое значение ЭДС находится в прямой зависимости от числа витков катушки. Из соотношения ЭДС в первичной и вторичной обмотках, определяют главный параметр аппарата— коэффициент трансформации (К): К = Е1 / Е2 = W1 / W2.

Вторичная катушка по сравнению с первичной содержит витков:

Читайте также:  FBTest v1.1 — прибор для проверки трансформаторов: обзор и тестирование

  • в повышающем трансформаторе – больше (К меньше единицы);
  • в понижающем – меньше (К больше единицы).

Помимо рабочего (основного), в установке образуется магнитный поток рассеяния Фр1. Это силовые линии, ответвляющиеся от рабочего магнитного потока Ф1 в сердечнике и замыкающиеся по воздуху вокруг витков катушек. Как и Ф1, Фр1 является переменным, а значит, он, согласно закону электромагнитной индукции, наводит в первичной обмотке ЭДС самоиндукции Ер1.

Е1 и Ер1 всегда направлены против приложенного к первичной обмотке напряжения U1. По характеру действия на ток, они подобны резистору, потому и обозначаются термином «индуктивное сопротивление» (Х).

Емкостное и индуктивное сопротивление

Следовательно, создавая I1, напряжение U1 преодолевает активное сопротивление R1 первичной катушки и обе ЭДС самоиндукции. Математически это выглядит так: U1 = I1 * R1 + (-Е1) + (-Ер1).

Запись выполнена в векторной форме, поэтому перед обозначениями ЭДС самоиндукции проставлены значки «-»: они говорят о противоположном направлении этих векторов относительно напряжения U1. Ток холостого хода I1 не является строго синусоидальным.

Он искажается, поскольку имеет в своем составе так называемую третью гармоническую составляющую (ТГС), обусловленную вихревыми токами, гистерезисом и магнитным насыщением магнитопровода. Но с определенной долей приближения, годной для практических расчетов, его можно заменить эквивалентным синусоидальным током с равноценным действующим значением.

Почему важно использовать ваттметр

Такой измерительный прибор, как ваттметр, дает возможность осуществить точные замеры коэффициентов мощности. Благодаря его применению можно получить максимально точный итоговый результат. После этого потребуется на основе результата, который получился, создать точную векторную диаграмму. Установленные потери необходимо учитывать по каждой фазе. Результат, который будет получен, не может сравниваться с установленными нормативами представленного оборудования. полученные показатели, которые были одержаны после проведения исследований тока холостого хода трансформатора . Возможно сравнение только с теми показателями, которые были получены во время проведения предшествующих проверок. В том случае, когда потери спустя определенный эксплуатационный период начинают расти, это свидетельствует о наличие различных нарушений в изоляции пластин магнитовода. Вернуть на круги своя уже запущенный процесс не представляется возможным. Поэтому необходимо обращение к квалифицированным специалистам для проведения ремонтных работ.

ваттметр

Таблица потерь

Потребляемая активная мощность — это потери ХХ трансформатора. Часть ее тратится на нагрев провода обмотки (I1 2 * R1). Она незначительна, поскольку сопротивление R1 провода мизерно и ток ХХ также мал – 3-10% от номинального.

Основная доля расходуется на вихревые токи в магнитопроводе и его перемагничивание. Эти явления приводят к нагреву магнитопровода. Ф1, обуславливающий основную часть потерь холостого хода, не зависит от тока нагрузки. Следовательно, потери имеются постоянно и в любом режиме работы устройства, в том числе и в активном (нагрузочном).

Таблица потерь ХХ:

Номинальная мощность, кВА Номинальное напряжение ВН/НН, кВ Потери холостого хода, Вт
250 10/0,4 730
315 10/0,4 360
400 10/0,4 1000
500 10/0,4 1150
630 10/0,4 1400
800 10/0,4 1800
1000 10/0,4 1950
1250 10/0,4 2300
1600 10/0,4 2750
2000 10/0,4 3200
2500 10/0,4 4200

Со временем, потери увеличиваются из-за следующих изменений в магнитопроводе:

  • меняется структура стали;
  • падает сопротивление изоляции между пластинами;
  • нарушается изоляция стяжек, что приводит к короткому замыканию между пластинами.

Проверка работы

С целью проверки устройства его включают в режиме ХХ и выполняют следующие измерения:

  1. вольтметром замеряют напряжение, подаваемое на первичную катушку (U1);
  2. другим вольтметром — напряжение U2 на выводах вторичной обмотки. Применяют прибор с сопротивлением, довольно высоким для того, чтобы ток во вторичной обмотке оставался равным нулю;
  3. в цепь первичной навивки включают амперметр для определения силы тока холостого хода
  4. сюда же включают ваттметр, измеряющий потребляемую мощность.

Сняв показания с приборов, производят вычисления:

  1. определяют коэффициент трансформации: К = U1 / U2;
  2. по специальным формулам рассчитывают потери ХХ.

Используя данные опыта ХХ в сочетании с данными опыта короткозамкнутого режима, определяют КПД устройства.

Порядок и схема измерения

Перед проведением опыта проводят процесс размагничивания магнитопровода испытуемого трансформатора. Для этого используется постоянный ток, пропускаемый через одну из обмоток стороны низкого напряжения. Подключение тока производится многократно, каждое последующее подключение происходит с изменением полярности и уменьшением величины. Начальное значение не должно быть меньше двойного значения ожидаемого тока холостого хода. При каждом последующем включении величина уменьшается на 30-40 %. Процесс заканчивается при токе, меньшим значения тока холостого хода.

Для проведения непосредственно опыта холостого хода на вторичную обмотку трансформатора подается номинальное напряжение, с отклонением от нормы ±5%. Вывод нейтрали, если он есть, при этом не используется. Напряжение при этом – строго синусоидальное, с номинальной частотой сети.

Для проведения измерений потребуется три лабораторных прибора, с классом точности не менее 0,5. Это амперметры, вольтметры и ваттметры. амперметры подключаются в каждую фазу последовательно. вольтметры включаются на линейное напряжение всех трех фаз. Токовые обмотки ваттметров подключаются последовательно с амперметрами. Обмотки напряжения ваттметров подключаются согласно приведенным схемам. Подается напряжение, с приборов снимаются показания.

Строго говоря, измерение производится по тем же схемам, которые использовались на заводе изготовителе для проведения опыта. Ведь полученные данные нужно будет сравнить с заводскими. Но, если источник трехфазного напряжения недоступен, можно выполнить три измерения, подавая напряжение на две фазы обмотки трансформатора, закорачивая третью, остающуюся свободной.

При этом используется только линейное напряжение, так как искажение формы кривой из-за нелинейных нагрузок в сети на него имеет минимальное влияние. По этим же схемам проводится опыт холостого хода при пониженном (малом) напряжении.

Холостой ход трехфазного трансформатора

Характер работы 3-фазного устройства в режиме ХХ зависит от магнитной системы и схемы подключения обмоток:

  1. первичная катушка — «треугольником», вторичная — «звездой» (D/Y): имеет место свободное замыкание ТГС тока I1 по обмоткам устройства. Поэтому магнитный поток и ЭДС являются синусоидальными и нежелательные процессы, описанные выше, не происходят;
  2. схема Y/D: ТГС магнитного потока появляется, но ток от наведенной им дополнительной ЭДС свободно течет по замкнутым в «треугольник» вторичным катушкам. Этот ток создает свой поток вектора магнитной индукции, который гасит вызывающую его третью ГС основного МП. В результате магнитный поток и ЭДС, имеют почти синусоидальную форму;
  3. соединение первичной и вторичной катушек «звездой» (Y/Y).

В последней схеме ТГС тока I1 отсутствует, поскольку для нее нет пути: третьи гармонии каждой из фаз в любой момент времени направлены к нулевой точке или от нее. Из-за этого искажается магнитный поток.

Дальнейшее определяется магнитной системой:

  1. 3-фазный трансформатор в виде группы 1-фазных: ТГС магнитного потока замыкается в каждой фазе по собственному сердечнику и из-за малого магнитного сопротивления последнего, достигает амплитуды в 15% – 20% рабочего магнитного потока. Она создает дополнительную ЭДС, амплитуда которой может достигать уже 45% – 60% от основной ЭДС. Такой рост напряжения может привести к пробою изоляции с последующей поломкой электроустановок;
  2. трансформаторы с бронестержневой магнитной системой: имеют место те же явления (третьи гармонические магнитного потока замыкаются по боковым ярмам магнитопровода);
  3. трехстержневая магнитная система: ТГС пути по магнитопроводу не имеет и замыкается по среде с малой магнитной проницаемостью — воздух, масло, стенки бака. Поэтому она имеет малую величину и значительной дополнительной ЭДС не наводит.

Схема опыта холостого хода трехфазного двухобмоточного трансформатора

Присутствие в схеме 3-фазного трансформатора соединения «треугольник» в значительной степени нейтрализует негативное влияние ТГС магнитного потока и улучшает кривую ЭДС.

Описание процесса

Намагничивание трансформатора изза включения его под напряжение считается самым неблагоприятным случаем, вызывающим БНТ наибольшей амплитуды. Когда производится отключение трансформатора, напряжение намагничивания оказывается равным нулю, ток намагничивания снижается до нуля, в то время как магнитная индукция изменяется согласно характеристике намагничивания сердечника. Указанное обуславливает наличие остаточной индукции в сердечнике. Когда, по истечении некоторого времени, производится повторное включение трансформатора под напряжение, изменяющееся по синусоидальному закону, магнитная индукция начинает изменяться по тому же закону, однако со смещением на значение остаточной индукции. Остаточная индукция может составлять 80–90% номинальной индукции, и, таким образом, точка может переместиться за излом характеристики намагничивания, что, в свою очередь, обуславливает большую амплитуду и искажение формы кривой тока.

На рисунке представлена характерная форма БНТ. Данная осциллограмма отображает наличие длительно затухающей апериодической составляющей, может быть охарактеризована содержанием различных гармоник и большой амплитудой тока в начальный момент времени (до 30 раз превышающей значение номинального тока трансформатора). Кривая значительным образом затухает через десятые секунды, однако полное затухание характерно через несколько секунд. При определенных обстоятельствах БНТ затухает лишь спустя минуты после включения трансформатора под напряжение.

Сварочный трансформатор: устройство и принцип действия

Сварочный трансформатор является, пожалуй, самым распространенным видом промышленного оборудования. Его основу составляют несколько ключевых узлов, которые, взаимодействуя, генерируют сварочную дугу. Ее мощности достаточно для того, чтобы соединить две металлические заготовки или разрезать цельный кусок металла. В зависимости от конструктива, функционала и силы генерируемого напряжения оборудование делится на несколько видов. Каков принцип действия сварочного трансформатора, какие происходят при этом процессы, отличительные особенности моделей – это неполный список вопросов, которые рассмотрены ниже.

Устройство сварочного трансформатора

Для плавки металла необходимо настроить в нужных значениях параметры потребляемого сетевого тока. В сварочном оборудовании изменяются основные его значения: понижается напряжение и возрастает сила тока. Сварка металлических заготовок была бы невозможна без основных комплектующих, которые входят в состав даже самого простого сварочного трансформатора:

  • первичная обмотка (выполняется из изолированного провода);
  • вторичная обмотка (очень часто для лучшей теплоотдачи выполняется неизолированной);
  • магнитопровод;
  • вертикальный винт крепления;
  • крепление к обмотке и гайка винта;
  • зажимы для фиксации проводов;
  • рукоятку зажима винта;
  • металлический корпус.

Помимо основного в сварочных трансформаторах используется дополнительное оборудование, улучшающее их работу и расширяющие функционал.

Для любого сварочного аппарата необходим магнитопровод. Он никак не влияет на параметры тока, но без сердечника невозможно образовать магнитное поле. Он состоит из набора металлических пластин своеобразной формы. Поверхность пластин покрыта оксидом, а в некоторых случаях защищена лаком. Изоляция необходима по техническим соображениям. Если бы сердечники делались из металла и не изолировались, то из-за действий магнитного поля генерировались бы токи Фуко. Они снижают индукцию поля.

Для снижения шумов, которые генерируются при работе трансформатора, важно максимально туго стянуть пластины. При ослаблении соединения усиливается вибрация, причиной возникновения которой является проходящий ток. Следует учесть, что избавиться от шума полностью не удастся. И его наличие в умеренной степени даже в новом оборудовании является нормой.

Принцип работы сварочного трансформатора

Итак, настало время рассмотреть детальнее, что такое сварочный трансформатор и как он функционирует. Алгоритм работы оборудования включает несколько основных этапов:

  1. Из сети энергоснабжения ток подается на первичную обмотку. В результате этого генерируется магнитный поток, замыкающийся на сердечнике устройства;
  2. Далее напряжение поступает на вторичную обмотку.
  3. Изготовленный из ферромагнитных материалов сердечник, на котором располагаются обе обмотки – первичная и вторичная, генерирует магнитное поле.
  4. По количеству витков катушки, точнее их разницы, изменяются напряжение и сила тока. По данным параметрам и рассчитывается трансформатор.

Есть прямая зависимость между количеством витков вторичной обмотки и выходным напряжением. Если нужно повысить напряжение на выходе, то следует прибавить количество витков вторичной катушки, и наоборот. Сварочный трансформатор является понижающим устройством. По этой причине количество витков на вторичной обмотке у него меньше, чем на первичной.

Помимо этого, устройство и узлы сварочного аппарата позволяют регулировать и силу тока. Для этого необходимо изменять расстояние между вторичной и первичной обмотками. Здесь наблюдается обратная зависимость: чем меньше расстояние, тем сильнее сила тока, и наоборот – чем больше расстояние, тем меньше значение. Данные регулировки дают возможность сварщику работать с материалами, которые отличаются и по составу, и по толщине.

Режим холостого хода трансформатора

Холостым ходом (ХХ) называют такое подключение устройства, когда на первичную обмотку подается номинальное переменное напряжение, а цепи всех вторичных – разомкнуты (нагрузки не подключены).

В преобразователе напряжения, деление обмоток (катушек) на первичную и вторичные условно. Любая из них становится первичной, когда на нее поступает исходное переменное напряжение. Прочие, в них наводится ЭДС — становятся, соответственно, вторичными.

Фото 2

Опыт холостого хода проводится по схеме показанной на рисунке

Следовательно, любой трансформатор, соответственно способу подключения, может быть как понижающим, так и повышающим (кроме разделительного – с коэффициентом трансформации, равным единице).

Поскольку цепь вторичной катушки разъединена, тока в ней нет (I2 = 0). В первичной протекает I1, формирующий в магнитопроводе поток вектора магнитной индукции Ф1. Последний меняется по синусоидальному закону, но из-за перемагничивания стали отстает по фазе от I1 на угол B (угол потерь).

Применяют следующую терминологию:

  • I1: ток ХХ трансформатора;
  • Ф1: рабочий магнитный поток.

Под действием Ф1 во всех катушках возникает ЭДС:

Фото 3

  • в первичной – самоиндукции (Е1);
  • во вторичных – взаимоиндукции (Е2).

Зависимость ЭДС от различных параметров определяется формулами:

Е1 = 4,44 * f * W1 * Ф1max *10-8 ,

Е2 = 4,44 * f * W2 * Ф1max * 10-8, где

F — частота, Гц;

W1 и W2 — число витков в обмотках;

Ф1max — величина магнитного потока в точке максимума.

Следовательно, числовое значение ЭДС находится в прямой зависимости от числа витков катушки. Из соотношения ЭДС в первичной и вторичной обмотках, определяют главный параметр аппарата— коэффициент трансформации (К): К = Е1 / Е2 = W1 / W2.

Вторичная катушка по сравнению с первичной содержит витков:

  • в повышающем трансформаторе – больше (К меньше единицы);
  • в понижающем – меньше (К больше единицы).

Помимо рабочего (основного), в установке образуется магнитный поток рассеяния Фр1. Это силовые линии, ответвляющиеся от рабочего магнитного потока Ф1 в сердечнике и замыкающиеся по воздуху вокруг витков катушек. Как и Ф1, Фр1 является переменным, а значит, он, согласно закону электромагнитной индукции, наводит в первичной обмотке ЭДС самоиндукции Ер1.

Е1 и Ер1  всегда направлены против приложенного к первичной обмотке напряжения U1. По характеру действия на ток, они подобны резистору, потому и обозначаются термином «индуктивное сопротивление» (Х).

Фото 4

Емкостное и индуктивное сопротивление

Следовательно, создавая I1, напряжение U1 преодолевает активное сопротивление R1 первичной катушки и обе ЭДС самоиндукции. Математически это выглядит так: U1 = I1 * R1 + (-Е1) + (-Ер1).

Запись выполнена в векторной форме, поэтому перед обозначениями ЭДС самоиндукции проставлены значки «-»: они говорят о противоположном направлении этих векторов относительно напряжения U1. Ток холостого хода I1 не является строго синусоидальным.

Он искажается, поскольку имеет в своем составе так называемую третью гармоническую составляющую (ТГС), обусловленную вихревыми токами, гистерезисом и магнитным насыщением магнитопровода. Но с определенной долей приближения, годной для практических расчетов, его можно заменить эквивалентным синусоидальным током с равноценным действующим значением.

Таблица потерь

Будучи разомкнутой, цепь вторичной катушки не потребляет активной мощности. Но в потребляемой первичной обмоткой доля активной имеется. Хотя основную часть составляет реактивная (намагничивающая) мощность, возвращаемая генератору.

Потребляемая активная мощность — это потери ХХ трансформатора. Часть ее тратится на нагрев провода обмотки (I12 * R1). Она незначительна, поскольку сопротивление R1 провода мизерно и ток ХХ также мал – 3-10% от номинального.

Основная доля расходуется на вихревые токи в магнитопроводе и его перемагничивание. Эти явления приводят к нагреву магнитопровода. Ф1, обуславливающий основную часть потерь холостого хода, не зависит от тока нагрузки. Следовательно, потери имеются постоянно и в любом режиме работы устройства, в том числе и в активном (нагрузочном).

Таблица потерь ХХ:

Номинальная мощность, кВА Номинальное напряжение ВН/НН, кВ Потери холостого хода, Вт
250 10/0,4 730
315 10/0,4 360
400 10/0,4 1000
500 10/0,4 1150
630 10/0,4 1400
800 10/0,4 1800
1000 10/0,4 1950
1250 10/0,4 2300
1600 10/0,4 2750
2000 10/0,4 3200
2500 10/0,4 4200

Со временем, потери увеличиваются из-за следующих изменений в магнитопроводе:

  • меняется структура стали;
  • падает сопротивление изоляции между пластинами;
  • нарушается изоляция стяжек, что приводит к короткому замыканию между пластинами.

Доля потерь у давно эксплуатируемого трансформатора вместо положенных 5%, может составлять 50%.

Проверка работы

С целью проверки устройства его включают в режиме ХХ и выполняют следующие измерения:

Фото 5

  1. вольтметром замеряют напряжение, подаваемое на первичную катушку (U1);
  2. другим вольтметром — напряжение U2 на выводах вторичной обмотки. Применяют прибор с сопротивлением, довольно высоким для того, чтобы ток во вторичной обмотке оставался равным нулю;
  3. в цепь первичной навивки включают амперметр для определения силы тока холостого хода
  4. сюда же включают ваттметр, измеряющий потребляемую мощность.

Сняв показания с приборов, производят вычисления:

  1. определяют коэффициент трансформации: К = U1 / U2;
  2. по специальным формулам рассчитывают потери ХХ.

Используя данные опыта ХХ в сочетании с данными опыта короткозамкнутого режима, определяют КПД устройства.

Холостой ход трехфазного трансформатора

Характер работы 3-фазного устройства в режиме ХХ зависит от магнитной системы и схемы подключения обмоток:

  1. первичная катушка — «треугольником», вторичная — «звездой» (D/Y): имеет место свободное замыкание ТГС тока I1 по обмоткам устройства. Поэтому магнитный поток и ЭДС являются синусоидальными и нежелательные процессы, описанные выше, не происходят;
  2. схема Y/D: ТГС магнитного потока появляется, но ток от наведенной им дополнительной ЭДС свободно течет по замкнутым в «треугольник» вторичным катушкам. Этот ток создает свой поток вектора магнитной индукции, который гасит вызывающую его третью ГС основного МП. В результате магнитный поток и ЭДС, имеют почти синусоидальную форму;
  3. соединение первичной и вторичной катушек «звездой» (Y/Y).

В последней схеме ТГС тока I1 отсутствует, поскольку для нее нет пути: третьи гармонии каждой из фаз в любой момент времени направлены к нулевой точке или от нее. Из-за этого искажается магнитный поток.

Дальнейшее определяется магнитной системой:

  1. 3-фазный трансформатор в виде группы 1-фазных: ТГС магнитного потока замыкается в каждой фазе по собственному сердечнику и из-за малого магнитного сопротивления последнего, достигает амплитуды в 15% – 20% рабочего магнитного потока. Она создает дополнительную ЭДС, амплитуда которой может достигать уже 45% – 60% от основной ЭДС. Такой рост напряжения может привести к пробою изоляции с последующей поломкой электроустановок;
  2. трансформаторы с бронестержневой магнитной системой: имеют место те же явления (третьи гармонические магнитного потока замыкаются по боковым ярмам магнитопровода);
  3. трехстержневая магнитная система: ТГС пути по магнитопроводу не имеет и замыкается по среде с малой магнитной проницаемостью — воздух, масло, стенки бака. Поэтому она имеет малую величину и значительной дополнительной ЭДС не наводит.

Фото 6

Схема опыта холостого хода трехфазного двухобмоточного трансформатора

Присутствие в схеме 3-фазного трансформатора соединения «треугольник» в значительной степени нейтрализует негативное влияние ТГС магнитного потока и улучшает кривую ЭДС.

В мощных установках для больших напряжений, где требуется соединение обмоток на обеих сторонах «звездой», устанавливают дополнительную нерабочую обмотку (не несет электрической нагрузки), соединенную по схеме «треугольник».

Источники
  • https://ToolProkat43.ru/sistemy-osveshcheniya/kak-rasschitat-tok-holostogo-hoda-transformatora.html
  • https://forte-drilling.ru/opyt-i-teoriya/izmerenie-poter-holostogo-hoda-transformatora.html
  • https://BurForum.ru/teoriya-i-opyt/holostogo-hoda-transformatora.html
  • https://oxotnadzor.ru/chto-pokazyvayet-tok-kholostogo-khoda-transformatora/
  • https://vdn-plus.ru/tok-kholostogo-khoda-svarochnogo-transformatora-chto-eto/
  • https://voltland.ru/other/tok-kholostogo-khoda-transformatora.html
  • https://RkzSp.ru/svet/magnitnyj-potok-v-transformatore-2.html
  • https://proprovoda.ru/elektrooborudovanie/transformatory/xolostoj-xod.html

Оцените статью
О трансформаторе
Adblock
detector