Currently set to Index
Currently set to Follow

Формула и определение электрического напряжения в цепи в физике

Содержание
  1. Что такое напряжение и ток?
  2. Разность потенциалов
  3. Постоянное и переменное напряжение
  4. Понятие потенциала, разности потенциалов
  5. Измерение напряжения
  6. Измерение тока
  7. Формула
  8. Единица измерения электрического напряжения
  9. Электрическое напряжение в цепи
  10. Электрические напряжения при последовательном и параллельном соединении
  11. Измерение электрического напряжения
  12. Примеры типовых значений электрического напряжения
  13. Закон Ома
  14. Напряжение в цепях постоянного тока
  15. Напряжение в цепях переменного тока
  16. Напряжение в цепях трёхфазного тока
  17. Напряжение с точки зрения гидравлики
  18. Характерные значения и стандарты
  19. От чего зависит напряжение
  20. Факторы, влияющие на норматив напряжения электрических токов
  21. Меры предосторожности при измерении напряжений электротоков
  22. Осциллограммы постоянного и переменного напряжения
  23. Что такое ЭДС
  24. Измерение напряжения на различных участках электрической цепи.

Что такое напряжение и ток?

Кстати действительно что же такое электрический ток и напряжение? Я думаю, что никто на самом деле и не знает, ведь чтобы это знать это надо хотябы видеть. Кто может видеть ток, бегущий по проводам?

Да никто, человечество еще не достигло таких технологий, чтобы воочию наблюдать движения электрических зарядов.  Все что мы видим в учебниках и научных трудах это некая абстракция созданная в результате многочисленных наблюдений.

Ну ладно об этом можно много рассуждать… Так давайте попробуем разобраться, что такое электрический ток и  напряжение. Я не буду писать  определения, определения   не дают самого понимания сути.  Если интересно, возьмите любой учебник по физике.

Так как мы его не видим электрического тока и всех процессов протекающих в проводнике, тогда попробуем создать аналогию.

И традиционно электрический ток текущий в проводнике сравнивают с водой бегущей по трубам. В нашей аналогии  вода это электрический ток. Вода бежит  по трубам с определенной  скоростью, скорость это сила тока, измеряемая в амперах. Ну трубы это само собой проводник.

Хорошо, электрический ток мы себе представили, но а что такое напряжение? Сейчас помозгуем.

Вода  в трубе, в отсутствии каких-либо сил (сила тяжести, давления) теч не будет, она будет покоиться как и любая другая жижа вылитая на пол. Так вот эта сила или точнее  сказать энергия в нашей водопроводной аналогии и будет тем самым напряжением.

Но что происходит с водой бегущей из резервуара расположенного высоко над землей? Вода устремляется бурным потоком из резервуара к поверхности земли, гонимая силами тяготения. И чем выше от земли расположен резервуар тем с большей скоростью вытекает вода из шланга. Понимаете о чем я говорю?

Чем выше резервуар, тем больше сила (читай напряжение) воздействующая на воду. И тем больше скорость водного потока (читай сила тока). Теперь становится понятно и в голове начинает создаваться красочная картинка.

Разность потенциалов

А теперь давайте соединим эти бутылки между собой шлангом и поместим в шланг шарик, что будет?

Вода начнёт перетекать из бутылки, в которой уровень воды больше, в другую бутылку. И соответственно поток воды будет перемещать наш шарик по шлангу. Процесс перетекания воды прекратится тогда, когда уровень в бутылках станет одинаковым (принцип сообщающихся сосудов).

Когда уровень воды в бутылках стал одинаковым, разность потенциалов стала равна нулю, т.е. электродвижущая сила (ЭДС) равна нулю и наш шарик остаётся на месте.

Постоянное и переменное напряжение

Напряжение бывает бывает постоянным и переменным. В разговорной речи часто можно услышать “постоянный ток” и “переменный ток. Постоянный ток и постоянное напряжение – это синонимы, то же что и переменный ток и переменное напряжение.

На примере выше мы с вами рассмотрели постоянное напряжение. То есть давление воды на дно башни в течение времени постоянно. Пока в башне есть вода, она оказывает давление на дно башни. Вроде бы все элементарно и просто. Но какое же напряжение называют переменным?

Все любят качаться на качелях:

Что такое напряжение

Сначала вы летите в одном направлении, потом происходит торможение, а потом уже летите обратно спиной и весь процесс снова повторяется. Переменное напряжение ведёт себя точно так же. Сначала “электрическое давление” давит в одну сторону, потом происходит процесс торможения, потом оно давит в другую сторону, снова происходит торможение и весь процесс снова повторяется, как на качелях.

Тяжко для понимания? Тогда вот вам еще один пример из знаменитой книжки “Первые шаги в электронике” Шишкова. Берем замкнутую систему труб с водой и поршень. Поршень у нас находится в движении. Следовательно, молекулы воды у нас отклоняются то в одну сторону:

переменное напряжение

то в другую:

переменное напряжение
переменное напряжение

Так же ведут себя и электроны. В вашей домашней сети 220 В они колеблются 50 раз в секунду. Туда-сюда, туда-сюда. Столько-то колебаний в секунду называется Герцем. В литературе пишется просто “Гц”. Тогда получается, что колебание напряжения в наших розетках 50 Гц, а в Америке 60 Гц. Это связано со скоростью вращения генератора на электростанциях. В разговорной речи постоянное напряжение называют “постоянкой”, а переменное – “переменкой”.

Понятие потенциала, разности потенциалов

С понятием напряжения электрического тока тесно связано понятие «потенциал» , или «разность потенциалов». Хорошо, обратимся снова к нашей водопроводной аналогии.

Наш резервуар находится на возвышенности что позволяет воде беспрепятственно стекать по трубе вниз. Так как бак с водой на высоте, то и потенциал этой точки будет более высоким или более положительным чем тот что находится на уровне земли. Видите что получается?

У нас появилось две точки имеющие разные потенциалы, точнее разную величину потенциала.

Получается, для того чтобы электрический ток мог бежать по проводу, потенциалы не должны быть равны.  Ток бежит от точки с большим потенциалом к точки с меньшим потенциалом.

Помните такое выражение, что ток бежит от плюса к минусу. Так вот это все тоже самое. Плюс это более положительный потенциал а минус более отрицательный.

Кстати а хотите вопрос на засыпку? Что произойдет с током, если величины потенциалов будет периодически меняться местами?

Тогда мы будем наблюдать то как электрический ток меняет свое направление на противоположное каждый раз как потенциалы поменяются. Это получится уже переменный ток. Но его мы пока рассматривать не будем, дабы в голове сформировалось ясное понимание процессов.

Измерение напряжения

Для замера напряжение используется прибор вольтметр, хотя сейчас наиболее популярны мультиметры.  Мультиметр это такой комбинированный прибор имеющий в себе много чего. О нем я писал в статье и рассказывал как им пользоваться.

Вольтметр это как раз тот прибор который измеряет разность потенциалов между двумя точками. Напряжение (разность потенциалов) в любой точке схемы обычно измеряется относительно НОЛЯ или ЗЕМЛИ или МАССЫ или МИНУСА батарейки. Не важно главное это должна быть точка имеющая наименьший потенциал во всей схеме.

Итак чтобы измерить напряжение постоянного тока между двумя точками, делаем следующее. Черный (минусовой ) щуп вольтметра втыкается в ту точку, где предположительно мы можем наблюдать точку с меньшим потенциалом (НОЛЬ).  Красный щуп (плюсовой) втыкаем в точку, потенциал которой нам интересен.

И результатом измерения будет  числовое значение разности потенциалов, или другими словами напряжение.

Измерение тока

В отличие от напряжения, которое замеряется в двух точках, величина тока замеряется в одной точке. Так как сила тока (или говорят просто ток) по нашей аналогии есть скорость течения воды, то эту скорость нужно замерять только в одной точке.

Нам нужно распилить водопровод и вставить в разрыв некий счетчик, который будет подсчитывать литры и  минуты. Както так.

Аналогично если вернемся в реальный мир нашей электрической модели, то получим тоже самое. Чтобы замерить величину электрического тока, нам нужно подключить в разрыв электрической цепи нехитрый прибор — амперметр. Амперметр также входит в состав мультиметра. Вы также можете почитать в моей статье.

Щупы мультиметра нужно переставить в режим измерения тока. Затем перекусываем наш проводник, и подключаем обрывки провода к мультиметру и вуаля — на экране мультиметра будет показана величина тока.

Формула

Формула для электрического напряжения U, согласно закона Ома для участка цепи, имеет вид

U = R * I .

Как видно из этой формулы, если электрическое напряжение остается неизменным, то чем больше электрическое сопротивление (R), тем меньше сила тока (I).

Другая формула для расчета электрического напряжения такова:

U = P / I .

То есть электрическое напряжение U равно мощности деленной на силу тока I.

Единица измерения электрического напряжения

Единицей измерения электрического напряжения в СИ является Вольт, сокращенно В (в честь итальянского учёного А. Вольта).

1 вольт (1 В) — это напряжение между двумя точками электрического поля, при переносе между которыми заряда 1 Кл совершается работа 1 Дж.

[U] = 1 В

Теперь вы можете объяснить смысл надписи 4,5 В или 9 В на круглой или плоской батарейке. Смысл в том, что при переносе с одного полюса источника на другой (через спираль лампочки или другой проводник) заряда 1 Кл силами электрического поля может быть совершена работа соответственно 4,5 Дж или 9 Дж.

В электротехнике напряжение может варьироваться от микровольт (1 мкВ = 1 * 10-6 В) и миливольт (1 мВ = 10-3 В), до киловольт (1 кВ = 1 * 103 В) и мегавольт (1 МВ = 106 В)

Вы можете преобразовать отдельные единицы измерения следующим образом:

1 В = 1000 мВ, 1 мВ = 1000 мкВ, 1 МВ = 1000 кВ, 1 кВ = 1000 В.

Электрическое напряжение в цепи

Для источников напряжения в схемах обычно используется один из следующих символов.

Электрическое напряжение источник напряжения
Источники напряжения и электрическая цепь

Источник напряжения всегда имеет два соединения/полюса. Полюс «плюс» и полюс «минус». Само напряжение обозначено стрелкой напряжения (UQ). Для источников оно всегда отображается от плюса к минусу.

Электрическое напряжение, падающее на резисторе, также можно обозначить стрелкой напряжения (на схеме обозначена как красная стрелка UR ). Это указывает на техническое направление электрического тока.

Также часто можно услышать термин «напряжение холостого хода» или «напряжение источника». Это выходное напряжение ненагруженного источника, т.е. источника, к которому ничего не подключено. Если цепь замкнута с нагрузкой, то можно измерить только напряжение на полюсах источника.

Электрические напряжения при последовательном и параллельном соединении

У нас уже есть статья о последовательном и параллельном соединении проводников, в котором мы обсуждаем эту тему более подробно. Поэтому здесь мы рассмотрим лишь некоторые основы.

При последовательном соединении компоненты подключаются в ряд.

Электрическое напряжение в цепях с последовательным соединением
Электрическое напряжение при последовательном соединении

Здесь электрическое напряжение источника делится на резисторы. Этот момент также описывается вторым правилом Кирхгофа. Здесь применимо следующее:

UQ = U1 + U2 + U3

то есть напряжение источника равно сумме электрических напряжений на отдельных резисторах. Напряжение источника по-разному распределяется по разным резисторам.

В электрической цепи с параллельным соединением компоненты расположены, соответственно, параллельно друг относительно друга. Это можно увидеть на следующей схеме.

Электрическое напряжение параллельное подключение
Электрическое напряжение в параллельной цепи

Здесь гораздо проще определить электрические напряжения на резисторах, так как при параллельном соединении:

UQ = U1 = U2 = U3

Поэтому электрическое напряжение на резисторах такое же высокое, как и электрическое напряжение источника.

Измерение электрического напряжения

Приборы для измерения напряжения, также называемые вольтметрами, всегда подключаются параллельно потребителю, на котором необходимо измерить электрическое напряжение.

Одним из наиболее часто используемых вольтметров является цифровой мультиметр (DMM), поэтому мы покажем вам процедуру измерения напряжения с помощью DMM. Сначала необходимо установить тип электрического напряжения (DC — постоянный ток или AC — переменный ток).

Для постоянного тока необходимо обратить внимание на правильную полярность, т.е. подключить плюс к положительному полюсу. На следующем этапе необходимо выбрать правильный диапазон измерения. Если вы не можете оценить, насколько велика измеряемая величина, установите наибольший возможный диапазон и двигайтесь от него вниз, пока не найдете нужный. Наконец, вам нужно только «считать» электрическое напряжение прибором.

Примеры типовых значений электрического напряжения

Для некоторых применений соответствующее электрическое напряжение можно найти в таблице ниже.

Светодиод 1,2 — 1,5 В
Зарядное устройство USB 5 В
Напряжение автомобильного аккумулятора 12, 4 — 12,8 В
Напряжение в розетке (среднеквадратичное или действующее значение) 230 В
Высоковольтные линии электропередач (ЛЭП) 60 кВ — 1 МВ

Вы можете видеть, что на высоковольтных линиях присутствует напряжение до мегавольт. Такие большие электрические напряжения используются для того, чтобы уменьшить потери в длинных линиях.

Решающим фактором для потребителя является мощность P, которую можно рассчитать для постоянного напряжения с помощью формулы:

P = U * I

Это означает, что электрический ток I так же важен для потребителя, как и электрическое напряжение. Согласно закону Ома, зависимость между током и напряжением имеет вид:

U = R * I .

Если напряжение остается неизменным, сопротивление определяет величину тока. Чтобы проиллюстрировать это, представьте следующее. У вас есть три разных бассейна, которые заполнены одинаковым количеством воды. Каждый бассейн имеет слив, который различается по сечению, т.е. в одном бассейне сливная труба очень маленькая, а в другом — очень большая.

Постоянное электрическое напряжение можно определить по тому, что все емкости заполнены на одинаковую высоту. Если слив узкий в нижней части, он представляет собой большое сопротивление. Ток здесь может течь только медленно. Если сечение сливной трубы больше, то сопротивление меньше и, соответственно, может протекать больший ток.

Закон Ома

Ну что дорогие друзья, я думаю  что мы не теряли время даром. Ознакомившись с нашими водопроводными моделями в голове  начал складываться пазл,  начало формироваться понимание.

Ну чтож попробуем проверить его на законе Ома.

Где:

  • I — ток измеряемый в Амперах (А);
  • U-напряжение измеряемое в Вольтах (В);
  • R-сопротивление измеряемое в Омах (Ом)

Ом нам говорил, что Электрический ток прямо пропорционален напряжению и обратно пропорционален сопротивлению.

Про сопротивление я сегодня не говорил, но я думаю что вы поняли. Сопротивление электрическому току оказывается материалом проводника. В нашей водопроводной системе сопротивление току воды оказывают ржавые трубы, забитые ржавчиной и прочей какой.

Таким образом закон Ома работает во всей своей красе что для водопроводной системы, что для электрической. Может быть мне податься в сантехники, уж очень много схожего.

Чем выше задран резервуар с водой, тем быстрее по трубам будет теч вода. Но если трубы загажены то скорость будет меньше. Чем больше сопротивление воде тем медленнее она будет теч. Если засор, то вода вообще может встать.

Ну и для электричества. Величина  тока  зависит прямо пропорционально от величины напряжения (разности потенциалов), и обратно пропорционально зависит от сопротивления.

Чем выше  напряжение тем больше величина тока, но чем больше сопротивление тем меньше величина тока. Напряжение может быть очень большим, но ток может не теч из-за обрыва. А обрыв это все равно, что если вместо металлического проводника мы подключили проводник из воздуха, а воздух обладает просто гигантским сопротивлением. Вот ток  и остановится.

Напряжение в цепях постоянного тока

Ротор — что это такое

В таких цепях значение описываемой характеристики в течение длительного времени остается постоянным. Постепенное изменение значения данной характеристики при подключении потребителей (нагрузки) к батарее связано с ее разрядкой – уменьшением разности потенциалов между клеммами источника питания вследствие перемещения большего количества носителей зарядов с положительной клеммы на отрицательную.

Ток и напряжение в данном случае связаны законом Ома, формула которого приведена ниже:

I = U/R,

где:

  • I – сила тока, А;
  • U – разность потенциалов, В;
  • R – сопротивление, Ом.

Треугольник Ома – удобная форма формулы одноименного закона.

Напряжение в цепях переменного тока

Маркировка кабеля

В таких бытовых и производственных цепях значение разности потенциалов на их концах непостоянно и изменяется во времени. При этом в определенный момент на одном конце цепи наблюдается максимальное значение данной характеристики, а на другом – минимальное. Графически такое изменение имеет вид синусоиды с двумя вершинами, соответствующими максимальным и минимальным значениями.

На заметку. Синусоидальную сущность разности потенциалов в данном случае можно наблюдать при помощи такого измерительного прибора, как осциллограф.

Напряжение в цепях трёхфазного тока

В таких, используемых чаще всего на производствах, цепях, состоящих из трех фазных проводов и общей нейтрали (нуля), различают два вида разности потенциалов:

  • Линейная – между всеми фазными проводами и нейтралью;
  • Фазная – между отдельным фазным проводом и нейтралью. Величина ее в 1,732 раза (квадратный корень из 3) меньше, чем линейного.

Розетка трехфазной электросети.

Напряжение с точки зрения гидравлики

Все вы видели и представляете, как выглядит водонапорная башня или просто водобашня. Грубо говоря, это большой высокий “бокал”, заполненный водой.

водобашня
водоносная башня

Так вот, представим себе, что башня доверху наполнена водой. Получается, в данный момент на дне башни ого-го какое давление!

водобашня
водобашня, заполненная водой

А что, если слить из башни воду хотя бы наполовину? Давление на дно башни уменьшится вдвое. А давайте-ка нальем в пустую башню одно ведро воды! Давление на дно башни будет мизерное.

Представьте такую ситуацию. У нас есть водонос, а шланг мы закупорили пробкой.

давление на пробку

Вода вроде бы готова бежать, но бежать то некуда! Пробка туго закупоривает шланг. Но на саму пробку сейчас оказывается давление, которое создает насосная станция. От чего зависит давление на пробку? Думаю понятно, что от мощности насоса. Если мощность насоса будет большая, то пробка вылетит со скоростью пули, или давление порвет шланг, если пробка туго сидит в шланге. В данном случае давление создается с помощью насоса. То есть можно сказать, что это модель башни с водой в горизонтальном положении.

Все то же самое можно сказать и про водобашню. Здесь давление на дно создается уже гравитационной силой. Как я уже говорил,  давление на дне башни зависит от того, сколько воды в башне в данный момент. Если башня наполнена водой под завязку, то и давление на дне башни будет большое, и наоборот.

Что такое напряжение

А теперь представьте себе какое давление на дне океана, особенно в Марианской впадине! Что можно сказать про давление в этих двух случаях? Оно вроде как есть, но молекулы воды стоят на месте и никуда не двигаются. Запомните этот момент. Давление есть, а движухи – нет.

Характерные значения и стандарты

Согласно современным стандартам для различных электросетей значение напряжение равно:

  • Однофазная бытовая сеть – 220 В;
  • Трехфазная промышленная сеть – 380/220В (линейное/фазное).

На заметку. Трёхфазные сети более универсальны, чем однофазные, так как обладают большей мощностью и позволяют подключать как специально предназначенное для них оборудование, так и простые бытовые электроприборы.

От чего зависит напряжение

Величина описываемой в данной статье характеристики зависит от следующих факторов:

  • Материла проводников, которыми соединены потребители в той или иной сети;
  • Количества подключённых к сети потребителей: приборов, инструментов, станков;
  • Температуры окружающей среды.

Также на величину разности потенциалов влияет качество монтажа той или иной электропроводки – при неаккуратной сборке и соединении проводов, использовании некачественных предохранителей она может существенно изменятся, создавая тем самым опасность для окружающих.

Факторы, влияющие на норматив напряжения электрических токов

Основные факторы, влияющие на значение электрического напряжение, это:

  • Тип электрической сети – постоянного или переменного тока;
  • Количество фаз – 1 или 3;
  • Мощность подключаемых к сети потребителей;
  • Классы влаго,- и водозащитные электрооборудования, для которого предназначена электрическая сеть.

Меры предосторожности при измерении напряжений электротоков

Измерение напряжения электрического тока – это очень необходимая, но при этом опасная операция, требующая соблюдения следующих мер предосторожности:

  • Все работы должны производиться с использованием исправных вольтметров и мультиметров – приборы должны показывать точное в пределах допустимой для них погрешности значение измеряемых характеристик. Не допускается применение неисправных и не прошедших своевременную поверку измерительных приборов.
  • Независимо от того, будет измеряться данная характеристика для постоянного или переменного тока, вольтметр (мультиметр) подключается к участку цепи параллельно;
  • При измерении вольт-амперных характеристик высокочастотных электросетей необходим специальный наряд-допуск. Нужен он потому, что работа с таким высоким напряжения требует наличия специальных навыков и опыта. При отсутствии такого документа самовольное выполнение работ на электроустановках может привести к административной ответственности;
  • Для измерительных работ необходимо также использование средств защиты: специальных перчаток, диэлектрических бот, электро,- и ручных инструментов с прорезиненными ручками, резиновых ковриков.

Важно! Специалисты советуют владельцам частных домов и коттеджей при отсутствии опыта в проведении подобных измерений обращаться к лицензированным в данной области организациям или к местной энергоснабжающей организации.

Мультиметр и вольтметр.

Также при проведении измерения на сетях с разностью потенциалов более 1000 В (1кВ) необходим физический барьер (специальная ограждающая лента), с помощью которого создается зона радиусом 5 метров вокруг токоведущего провода, жилы, электроустановки.

Таким образом, поняв, что такое напряжение как в физике, так и в быту, можно не только вникнуть в суть этой, простой на первый взгляд, характеристики электрического тока, но и, осознав ее опасность, более аккуратно и внимательно относится к выполнению электромонтажных работ.

Более наглядно понять, что называется электрическим напряжением, и в чем его суть можно по следующему видео.

Осциллограммы постоянного и переменного напряжения

Давайте рассмотрим, как выглядит переменное и постоянное напряжение на экране осциллографа. Как вы знаете, осциллограф показывает изменение напряжения во времени. Если на щуп осциллографа не подавать никакое напряжение, то на осциллограмме мы увидим простую прямую линию на нулевом уровне по оси Y. Ось Y – это значение напряжения, а ось Х – это время.

нулевое напряжение
осциллограмма нулевого напряжения

Давайте подадим постоянное напряжение. Как вы могли заметить, осциллограмма постоянного напряжения  – это также прямая линия, параллельная оси времени. Это говорит нам о том, что с течением времени значение постоянного напряжение не меняется, о чем нам лишний раз доказывает осциллограмма.

постоянное напряжение
осциллограмма постоянного напряжения

А вот так выглядит осциллограмма переменного напряжения. Как вы видите, напряжение со временем меняет свое значение. То оно больше нуля, то оно меньше нуля.

переменное напряжение
осциллограмма переменного напряжения

Про параметры переменного напряжения можете прочитать в этой статье.

Также отличное объяснение темы можно посмотреть в этом видео.

Что такое ЭДС

Что такое ЭДС, думаете Вы? Сейчас расскажу!

Электродвижущая сила (ЭДС) тоже измеряется в Вольтах, как и напряжение.

Давайте возьмём прибор, который измеряет вольты (вольтметр), батарейку и произведём замер.

Прибор показывает 1,5 Вольта и это не напряжение, а электродвижущая сила (ЭДС).

Что такое ЭДС

А теперь подключим к батарейке лампочки.

Измерение напряжения на различных участках электрической цепи.

Что такое напряжение простыми словами

Заметили, что на одной лампочке напряжение (не ЭДС) составляет 1 Вольт, а на другой 0,3 вольта

Напряжение на лампочках зависит от их мощности.Мощность измеряется в Ваттах.

Мощность= Напряжение * ток (P=U*I)

Чем больше мощность лампочки, тем больше будет на ней напряжение.

Если батарейка у нас 1,5 вольта= 1 Вольт +0,3 Вольта= 1,3 Вольта, куда делись 0,2 Вольта? У батарейки есть тоже своё внутреннее сопротивление, вот туда они и ушли.

Источники
  • http://popayaem.ru/elektricheskij-tok-napryazhenie.html
  • https://svoedelo.net/chto-takoe-electricheskoe-napry.html
  • https://www.RusElectronic.com/naprjazhjenije/
  • https://www.asutpp.ru/elektricheskoe-napryazhenie.html
  • https://amperof.ru/teoriya/elektricheskoe-napryazhenie.html

Оцените статью
О трансформаторе
Adblock
detector